File size: 13,712 Bytes
40d99cf
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b4e56a170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b4e56a200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b4e56a290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b4e56a320>", "_build": "<function ActorCriticPolicy._build at 0x7f6b4e56a3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b4e56a440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b4e56a4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b4e56a560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b4e56a5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b4e56a680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b4e56a710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b4e56a7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b4e55d100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688070736627937194, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOb7rwUCKu6dDGKvMwTFz3jo5a6Tub/vQAAgD8AAIA/zddBvScJMT6bGe09ndRBvnTJzzwwz6A7AAAAAAAAAADmzSK9PpCpPZpp6b1y9iG+nodLvpL0iz0AAAAAAAAAAJqZ1TebfXA/JLsxPEEXEL+0rh07hqagPQAAAAAAAAAAADQ3vZOEHz9s/ws9sErHvtpCXLzM7EC9AAAAAAAAAACaRcw7SKu6umO1vDj146wz3XJvOLUm17cAAIA/AACAP80007zD1UA5ys1AvsmMzL3aRCQ9JjvQPgAAAAAAAIA/mqd/vHlarD99SqO9+cLDvjJDJj3L2ym8AAAAAAAAAABmnrc9XBiBP7xvmz0suQS/iCAiPu8MxzsAAAAAAAAAADNC4LyFiZ4/sCNQvnlsHb919b28k5w2vQAAAAAAAAAAM1eSPa5Nn7p0Zge6gt30tKEynjqQFhw5AACAPwAAgD96msq+ZSoQP2YtPz5iSwC/RFfgvtFlAD4AAAAAAAAAAM3pxz0t44o/+QOrPcqlA7+ybyw+fFM6vQAAAAAAAAAAmudZPFIgurnKJiI5huFBNKHt9jlwnju4AACAPwAAgD8AtPA7UhD6uQEoCLxmuWy83ouVu5rZN70AAAAAAAAAAHqKQL5jOp4+EAIdPnGscr61AUu9zf/gvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL08WGh24eMAWyUTVcBjAF0lEdAuvhX3Gn4wnV9lChoBkdAbx7wob4rSWgHS+loCEdAuviOyHEdenV9lChoBkdAcawYPXkHU2gHTREBaAhHQLr4uizsyBV1fZQoaAZHQHH6G9QGfPJoB0v6aAhHQLr4/R2KVIJ1fZQoaAZHQHEhc3Mpw0hoB00WAWgIR0C6+QQ4OtnxdX2UKGgGR0BwNittALRbaAdL+2gIR0C6+r8NlRP5dX2UKGgGR0BwFYgHNX5naAdNQwFoCEdAuvsC8274BXV9lChoBkdAclX7NSqEOGgHTSYBaAhHQLr7A1RLsa91fZQoaAZHQHErOuaF23doB00sAWgIR0C6+warvLHNdX2UKGgGR0BzR/hHbypaaAdL8GgIR0C6+2JNXYDldX2UKGgGR0BxN4EidJ8OaAdNcAFoCEdAuvtzAJswc3V9lChoBkdAbpm12JSBLGgHTRoBaAhHQLr7g9hZyMl1fZQoaAZHQG3ZMwlByCFoB01WAWgIR0C6+475mAbydX2UKGgGR0BxqYg6ltTDaAdL2mgIR0C6+6vJFLFodX2UKGgGR0BxxbBguyu7aAdNFQFoCEdAuvu2ckMTe3V9lChoBkdAcBSQvHtF8WgHTTUBaAhHQLr73lY2bXp1fZQoaAZHQHFXFnZkCmxoB002AWgIR0C6/CNGAkLQdX2UKGgGR0BvLrlcQiA2aAdL72gIR0C6/CwVsUItdX2UKGgGR0ByrOUJOWSmaAdNDQFoCEdAuvxyMhouf3V9lChoBkdAc58WEbo8p2gHTUQBaAhHQLr8cK2KEWZ1fZQoaAZHQHDAJDJEH+toB01LAWgIR0C6/MYBJZntdX2UKGgGR0BvfLY02tMgaAdL6WgIR0C6/R2gzxgBdX2UKGgGR0Bsue1twaR7aAdL8WgIR0C6/VBxo7FLdX2UKGgGR0BzibHktEofaAdL9GgIR0C6/Vbl3hXKdX2UKGgGR0BJ+wVj7Q9iaAdLumgIR0C6/YkBsANodX2UKGgGR0BufmbNKRMfaAdL42gIR0C6/Y987ZFodX2UKGgGR0BUTH9BKL88aAdL42gIR0C6/ZV3Ux20dX2UKGgGR0BS+/KISDh+aAdLuGgIR0C6/dZ71Iy1dX2UKGgGR0BxaqtKZlWfaAdL82gIR0C6/d5Ex7AtdX2UKGgGR0ByorGQ0XP7aAdNOwFoCEdAuv4Ec6vJR3V9lChoBkdAcnIso2GZeGgHTTEBaAhHQLr+MRmK64F1fZQoaAZHQHE0y1/lQuVoB000AWgIR0C6/kEDuBtldX2UKGgGR0Bxy1acI7eVaAdNJgFoCEdAuv5c89wFT3V9lChoBkdAcnoWyTpxFWgHTQEBaAhHQLr+xce8wpR1fZQoaAZHQHHqNAPd2xJoB0veaAhHQLr+0Xm/3391fZQoaAZHQHELj+vQnhNoB01JAWgIR0C6/4DRUm2LdX2UKGgGR0Bxghm+TNdJaAdNeQFoCEdAuv+jAM2FWXV9lChoBkdAczWXQ+lj3GgHTRcBaAhHQLr/x7fpD/l1fZQoaAZHQHJrxSDRMOBoB00LAWgIR0C6/9wqur6tdX2UKGgGR0BworiOvMbFaAdNAQFoCEdAuwRrllsguHV9lChoBkdAcvBfGMn7YWgHS+1oCEdAuwTEzLwF1XV9lChoBkdAcSN1pj+aSmgHTR8BaAhHQLsE0GQjlgd1fZQoaAZHQHG9crEtNBZoB0vyaAhHQLsFBrXDm8x1fZQoaAZHQHLoSLVFx4poB007AWgIR0C7BR0AYHgQdX2UKGgGR0BxM6EIw/PgaAdNAwFoCEdAuwWPE/B3zXV9lChoBkdAcnb+XqqwQmgHTUUBaAhHQLsFubrkbP11fZQoaAZHQHCRXzpX6qNoB02EAWgIR0C7Bdf+85CGdX2UKGgGR0BxD2izsyBTaAdNLwFoCEdAuwYESsbNr3V9lChoBkdAbupcB2fTTmgHS/1oCEdAuwY4Ouq3mXV9lChoBkdARtao0hvBJ2gHS71oCEdAuwZEU1yeZ3V9lChoBkdAUH81R+BpYmgHS6hoCEdAuwZx2ll9SnV9lChoBkdAcIMSGahHsmgHTTMBaAhHQLsG2H8CPp91fZQoaAZHQHC+DmfXf65oB0vsaAhHQLsHClY2bXp1fZQoaAZHQE4UekHlfZ5oB0vEaAhHQLsHa/3WWhR1fZQoaAZHQHDbwCnxaxJoB0v7aAhHQLsHccfeUIN1fZQoaAZHQHEaWbTc6/9oB031AWgIR0C7CBGCiAUddX2UKGgGR0Bw1hgXuVopaAdL+mgIR0C7CDleF+NMdX2UKGgGR0ByDGgBcRlIaAdL92gIR0C7CG4uwosqdX2UKGgGR0BwNmmuTzNEaAdNOAFoCEdAuwia9bor4HV9lChoBkdAbVBB6a9bo2gHTSUBaAhHQLsJQGcFyJd1fZQoaAZHQHIU4ptrKvFoB00TAWgIR0C7CXj4k/r0dX2UKGgGR0By5iIcinpCaAdL/WgIR0C7CZt0vGp/dX2UKGgGR0BwVGlWOp84aAdNFgFoCEdAuwmti+cpb3V9lChoBkdAbmgpDu0CzWgHTQ4BaAhHQLsKDGVRk3F1fZQoaAZHQHGr2j0th/loB00PAWgIR0C7Ch4ScslLdX2UKGgGR0ByuVjAi3XqaAdNDQFoCEdAuwpCWom5UnV9lChoBkdAcNnojfNzKmgHTUoBaAhHQLsKf/rSmZV1fZQoaAZHQHKr2uxKQJZoB0v9aAhHQLsKsoIOYpl1fZQoaAZHQHCqtd7fHghoB00fAWgIR0C7CvXJkoWpdX2UKGgGR0BwloLpiZv2aAdNEQFoCEdAuwtH9hqj8HV9lChoBkdASAFpblijL2gHS5RoCEdAuwtMGdI5HXV9lChoBkdAcx3bO/tY0WgHS/ZoCEdAuwt7Bhx5s3V9lChoBkdAcaC8YAKfF2gHTS4BaAhHQLsLkgUDdQB1fZQoaAZHQHLjpx7zCk5oB0veaAhHQLsLlzcynDR1fZQoaAZHQHBsCTMaCMBoB00IAWgIR0C7C7uLehwmdX2UKGgGR0BxVK0OVgQZaAdNIgFoCEdAuwwPJU5uInV9lChoBkdAchAKsdT5wmgHS9JoCEdAuwxaNn5BTnV9lChoBkdAcRpCiRGMGWgHTQkBaAhHQLsMdFFDv3J1fZQoaAZHQHGZDuF6AvtoB00AAWgIR0C7DMPPomojdX2UKGgGR0BwhYSK3uuzaAdL9GgIR0C7DM4Bq9GrdX2UKGgGR0BywVBhQWN4aAdNNwFoCEdAuw0A5DJEIHV9lChoBkdAccoXD3ueBmgHS/VoCEdAuw0gqSX+l3V9lChoBkdAcDlaLn9vTGgHS+RoCEdAuw0m4qgAZXV9lChoBkdAcdIlRgqmTGgHTQsBaAhHQLsNN6XSjQB1fZQoaAZHQHCPXH3lCC1oB01LAWgIR0C7DUEK3NLUdX2UKGgGR0BwmaOmzjWDaAdL/2gIR0C7Da6Y7aIvdX2UKGgGR0Bw9cdMj/uLaAdNGAFoCEdAuw3n+kxh2HV9lChoBkdAcJ6nQpnYhGgHTRUBaAhHQLsOGTOgQH11fZQoaAZHQHBy8yBTXJ5oB00fAWgIR0C7DkyAH3UQdX2UKGgGR0BxXIMSbpeNaAdNJQFoCEdAuw6LlKbrknV9lChoBkdAcyboZydWhmgHTQEBaAhHQLsOmsnRb8p1fZQoaAZHQHAlmBFuvU1oB0v2aAhHQLsOyhQm/nJ1fZQoaAZHQG25O2y9mHxoB00EAWgIR0C7Dwp6Uqx1dX2UKGgGR0Bw+wT8HfMwaAdNeQFoCEdAuw8+epXIVHV9lChoBkdAbs96vaDf32gHTQUBaAhHQLsPYFefI0Z1fZQoaAZHQHAtz3RG+bpoB00kAWgIR0C7D77g88s+dX2UKGgGR0Byi86/7BO6aAdNFAFoCEdAuw/J9fCyhXV9lChoBkdAbhzyup0fYGgHS/5oCEdAuw/RZ1V5r3V9lChoBkdAcGmnbZezEGgHTSEBaAhHQLsQFyMkyDZ1fZQoaAZHQHGOnmmtQsRoB00sAWgIR0C7ECVJDmbLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}