File size: 28,369 Bytes
f9d7028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
# IndicTrans2
[π Paper](https://arxiv.org/abs/2305.16307) | [π Website](https://ai4bharat.iitm.ac.in/indic-trans2) | [βΆοΈ Demo](https://models.ai4bharat.org/#/nmt/v2) | [π€ HF Interface](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_interface) | [![colab link](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AI4Bharat/IndicTrans2/blob/main/huggingface_interface/colab_inference.ipynb)
IndicTrans2 is the first open-source transformer-based multilingual NMT model that supports high-quality translations across all the 22 scheduled Indic languages β including multiple scripts for low-resouce languages like Kashmiri, Manipuri and Sindhi. It adopts script unification wherever feasible to leverage transfer learning by lexical sharing between languages. Overall, the model supports five scripts Perso-Arabic (Kashmiri, Sindhi, Urdu), Ol Chiki (Santali), Meitei (Manipuri), Latin (English), and Devanagari (used for all the remaining languages).
We open-souce all our training dataset (BPCC), back-translation data (BPCC-BT), final IndicTrans2 models, evaluation benchmarks (IN22, which includes IN22-Gen and IN22-Conv) and training and inference scripts for easier use and adoption within the research community. We hope that this will foster even more research in low-resource Indic languages, leading to further improvements in the quality of low-resource translation through contributions from the research community.
This code repository contains instructions for downloading the artifacts associated with IndicTrans2, as well as the code for training/fine-tuning the multilingual NMT models.
Here is the list of languages supported by the IndicTrans2 models:
<table>
<tbody>
<tr>
<td>Assamese (asm_Beng)</td>
<td>Kashmiri (Arabic) (kas_Arab)</td>
<td>Punjabi (pan_Guru)</td>
</tr>
<tr>
<td>Bengali (ben_Beng)</td>
<td>Kashmiri (Devanagari) (kas_Deva)</td>
<td>Sanskrit (san_Deva)</td>
</tr>
<tr>
<td>Bodo (brx_Deva)</td>
<td>Maithili (mai_Deva)</td>
<td>Santali (sat_Olck)</td>
</tr>
<tr>
<td>Dogri (doi_Deva)</td>
<td>Malayalam (mal_Mlym)</td>
<td>Sindhi (Arabic) (snd_Arab)</td>
</tr>
<tr>
<td>English (eng_Latn)</td>
<td>Marathi (mar_Deva)</td>
<td>Sindhi (Devanagari) (snd_Deva)</td>
</tr>
<tr>
<td>Konkani (gom_Deva)</td>
<td>Manipuri (Bengali) (mni_Beng)</td>
<td>Tamil (tam_Taml)</td>
</tr>
<tr>
<td>Gujarati (guj_Gujr)</td>
<td>Manipuri (Meitei) (mni_Mtei)</td>
<td>Telugu (tel_Telu)</td>
</tr>
<tr>
<td>Hindi (hin_Deva)</td>
<td>Nepali (npi_Deva)</td>
<td>Urdu (urd_Arab)</td>
</tr>
<tr>
<td>Kannada (kan_Knda)</td>
<td>Odia (ory_Orya)</td>
<td></td>
</tr>
</tbody>
</table>
## Updates
- π¨ Dec 30, 2023 - Migrated IndicTrans2 tokenizer for HF compatible IndicTrans2 models to [IndicTransTokenizer](https://github.com/VarunGumma/IndicTransTokenizer) and will be maintained separately there from now onwards. Add LoRA fine-tuning scripts for our IndicTrans2 models in [huggingface_interface](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_interface).
- π¨ Dec 1, 2023 - Release of Indic-Indic model and corresponding distilled variants for each base model. Please refer to the [Download section](https://github.com/AI4Bharat/IndicTrans2#multilingual-translation-models) for the checkpoints.
- π¨ Sep 9, 2023 - Added HF compatible IndicTrans2 models. Please refer to the [README](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_interface) for detailed example usage.
## Tables of Contents
- [Download Models and Other Artifacts](#download-models-and-other-artifacts)
- [Multilingual Translation Models](#multilingual-translation-models)
- [Training Data](#training-data)
- [Evaluation Data](#evaluation-data)
- [Installation](#installation)
- [Data](#data)
- [Training](#training)
- [Evaluation](#evaluation)
- [Preparing Data for Training](#preparing-data-for-training)
- [Using our SPM model and Fairseq dictionary](#using-our-spm-model-and-fairseq-dictionary)
- [Training your own SPM models and learning Fairseq dictionary](#training-your-own-spm-models-and-learning-fairseq-dictionary)
- [Training / Fine-tuning](#training--fine-tuning)
- [Inference](#inference)
- [Fairseq Inference](#fairseq-inference)
- [CT2 Inference](#ct2-inference)
- [Evaluations](#evaluations)
- [Baseline Evaluation](#baseline-evaluation)
- [LICENSE](#license)
- [Citation](#citation)
## Download Models and Other Artifacts
### Multilingual Translation Models
| Model | En-Indic | Indic-En | Indic-Indic | Evaluations |
| ---------------------------- | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Base (used for benchmarking) | [download](https://indictrans2-public.objectstore.e2enetworks.net/it2_preprint_ckpts/en-indic-preprint.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/it2_preprint_ckpts/indic-en-preprint.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/it2_preprint_ckpts/indic-indic.zip) | [translations](https://indictrans2-public.objectstore.e2enetworks.net/translation_outputs.zip) (as of May 10, 2023), [metrics](https://drive.google.com/drive/folders/1lOOdaU0VdRSBgJEsNav5zC7wwLBis9NI?usp=sharing) |
| Distilled | [download](https://indictrans2-public.objectstore.e2enetworks.net/it2_distilled_ckpts/en-indic.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/it2_distilled_ckpts/indic-en.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/it2_distilled_ckpts/indic-indic.zip) |
### Training Data
| Data | URL |
| ---------------------------------------- | ------------------------------------------------------------------------------ |
| Bharat Parallel Corpus Collection (BPCC) | [download](https://indictrans2-public.objectstore.e2enetworks.net/BPCC.zip) |
| Back-translation (BPCC-BT) | [download](https://indictrans2-public.objectstore.e2enetworks.net/BT_data.zip) |
### Evaluation Data
| Data | URL |
| ----------------------- | ------------------------------------------------------------------------------------ |
| IN22 test set | [download](https://indictrans2-public.objectstore.e2enetworks.net/IN22_testset.zip) |
| FLORES-22 Indic dev set | [download](https://indictrans2-public.objectstore.e2enetworks.net/flores-22_dev.zip) |
## Installation
Instructions to setup and install everything before running the code.
```bash
# Clone the github repository and navigate to the project directory.
git clone https://github.com/AI4Bharat/IndicTrans2
cd IndicTrans2
# Install all the dependencies and requirements associated with the project.
source install.sh
```
Note: We recommend creating a virtual environment with python>=3.7.
### Additional notes about Installation
The ``prepare_data_joint_finetuning.sh`` and ``prepare_data_joint_training.sh`` scripts expect that the sentencepiece commandline utility and GNU parallel are installed.
1. To install the sentencepiece command line utility, please follow the instructions [here](https://github.com/google/sentencepiece?tab=readme-ov-file#build-and-install-sentencepiece-command-line-tools-from-c-source).
2. Please check if GNU parallel is installed, if not please install the same or alternatively in case of installation issues, remove ``parallel --pipe --keep-order`` from the respective training / finetuning script as well as ``apply_sentence_piece.sh``.
## Data
### Training
Bharat Parallel Corpus Collection (BPCC) is a comprehensive and publicly available parallel corpus that includes both existing and new data for all 22 scheduled Indic languages. It is comprised of two parts: BPCC-Mined and BPCC-Human, totaling approximately 230 million bitext pairs. BPCC-Mined contains about 228 million pairs, with nearly 126 million pairs newly added as a part of this work. On the other hand, BPCC-Human consists of 2.2 million gold standard English-Indic pairs, with an additional 644K bitext pairs from English Wikipedia sentences (forming the BPCC-H-Wiki subset) and 139K sentences covering everyday use cases (forming the BPCC-H-Daily subset). It is worth highlighting that BPCC provides the first available datasets for 7 languages and significantly increases the available data for all languages covered.
You can find the contribution from different sources in the following table:
<table>
<tbody>
<tr>
<td rowspan="4">BPCC-Mined</th>
<td rowspan="2">Existing</th>
<td>Samanantar</th>
<td>19.4M</th>
</tr>
<tr>
<td>NLLB</th>
<td>85M</th>
</tr>
<tr>
<td rowspan="2">Newly Added</th>
<td>Samanantar++</th>
<td>121.6M</th>
</tr>
<tr>
<td>Comparable</th>
<td>4.3M</th>
</tr>
<tr>
<td rowspan="5">BPCC-Human</td>
<td rowspan="3">Existing</td>
<td>NLLB</td>
<td>18.5K</td>
</tr>
<tr>
<td>ILCI</td>
<td>1.3M</td>
</tr>
<tr>
<td>Massive</td>
<td>115K</td>
</tr>
<tr>
<td rowspan="2">Newly Added</td>
<td>Wiki</td>
<td>644K</td>
</tr>
<tr>
<td>Daily</td>
<td>139K</td>
</tr>
</tbody>
</table>
Additionally, we provide augmented back-translation data generated by our intermediate IndicTrans2 models for training purposes. Please refer our paper for more details on the selection of sample proportions and sources.
<table>
<tbody>
<tr>
<td>English BT data (English Original)</td>
<td>401.9M</td>
</tr>
<tr>
<td>Indic BT data (Indic Original)</td>
<td>400.9M</td>
</tr>
</tbody>
</table>
<br>
### Evaluation
IN22 test set is a newly created comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel contexts across 22 Indic languages. It has been created from three distinct subsets, namely IN22-Wiki, IN22-Web and IN22-Conv. The Wikipedia and Web sources subsets offer diverse content spanning news, entertainment, culture, legal, and India-centric topics. IN22-Wiki and IN22-Web have been combined and considered for evaluation purposes and released as IN22-Gen. Meanwhile, IN22-Conv the conversation domain subset is designed to assess translation quality in typical day-to-day conversational-style applications.
<table>
<tbody>
<tr>
<td>IN22-Gen (IN22-Wiki + IN22-Web)</td>
<td>1024 sentences</td>
<td>π€ <a href="https://huggingface.co/datasets/ai4bharat/IN22-Gen">ai4bharat/IN22-Gen</td>
</tr>
<tr>
<td>IN22-Conv</td>
<td>1503 sentences</td>
<td>π€ <a href="https://huggingface.co/datasets/ai4bharat/IN22-Conv">ai4bharat/IN22-Conv</td>
</tr>
</tbody>
</table>
You can download the data artifacts released as a part of this work from the [following section](#download-models-and-other-artifacts).
## Preparing Data for Training
BPCC data is organized under different subsets as described above, where each subset contains language pair subdirectories with the sentences pairs. We also provide LaBSE and LASER for the mined subsets of BPCC. In order to replicate our training setup, you will need to combine the data for corresponding language pairs from different subsets and remove overlapping bitext pairs if any.
Here is the expected directory structure of the data:
```bash
BPCC
βββ eng_Latn-asm_Beng
β βββ train.eng_Latn
β βββ train.asm_Beng
βββ eng_Latn-ben_Beng
βββ ...
```
While we provide deduplicated subsets with the current available benchmarks, we highly recommend performing deduplication using the combined monolingual side of all the benchmarks. You can use the following command for deduplication once you combine the monolingual side of all the benchmarks in the directory.
```python3
python3 scripts/dedup_benchmark.py <in_data_dir> <out_data_dir> <benchmark_dir>
```
- `<in_data_dir>`: path to the directory containing train data for each language pair in the format `{src_lang}-{tgt_lang}`
- `<out_data_dir>`: path to the directory where the deduplicated train data will be written for each language pair in the format `{src_lang}-{tgt_lang}`
- `<benchmark_dir>`: path to the directory containing the language-wise monolingual side of dev/test set, with monolingual files named as `test.{lang}`
### Using our SPM model and Fairseq dictionary
Once you complete the deduplication of the training data with the available benchmarks, you can preprocess and binarize the data for training models. Please download our trained SPM model and learned Fairseq dictionary using the following links for your experiments.
| | En-Indic | Indic-En | Indic-Indic |
| ------------------ | -------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| SPM model | [download](https://indictrans2-public.objectstore.e2enetworks.net/en-indic-spm.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/indic-en-spm.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/indic-indic-spm.zip) |
| Fairseq dictionary | [download](https://indictrans2-public.objectstore.e2enetworks.net/en-indic-fairseq-dict.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/indic-en-fairseq-dict.zip) | [download](https://indictrans2-public.objectstore.e2enetworks.net/indic-indic-fairseq-dict.zip) |
To prepare the data for training En-Indic model, please do the following:
1. Download the SPM model in the experiment directory and rename it as `vocab`.
2. Download the Fairseq dictionary in the experiment directory and rename it as `final_bin`.
Here is the expected directory for training En-Indic model:
```bash
en-indic-exp
βββ train
β βββ eng_Latn-asm_Beng
β β βββ train.eng_Latn
β β βββ train.asm_Beng
β βββ eng_Latn-ben_Beng
β βββ ...
βββ devtest
β βββ all
β βββ eng_Latn-asm_Beng
β β βββ dev.eng_Latn
β β βββ dev.asm_Beng
β βββ eng_Latn-ben_Beng
β βββ ...
βββ vocab
β βββ model.SRC
β βββ model.TGT
β βββ vocab.SRC
β βββ vocab.TGT
βββ final_bin
βββ dict.SRC.txt
βββ dict.TGT.txt
```
To prepare data for training the Indic-En model, you should reverse the language pair directories within the train and devtest directories. Additionally, make sure to download the corresponding SPM model and Fairseq dictionary and put them in the experiment directory, similar to the procedure mentioned above for En-Indic model training.
You can binarize the data for model training using the following:
```bash
bash prepare_data_joint_finetuning.sh <exp_dir>
```
- `<exp_dir>`: path to the directory containing the raw data for binarization
You will need to follow the same steps for data preparation in case of fine-tuning models.
### Training your own SPM models and learning Fairseq dictionary
If you want to train your own SPM model and learn Fairseq dictionary, then please do the following:
1. Collect a balanced amount of English and Indic monolingual data (we use around 3 million sentences per language-script combination). If some languages have limited data available, increase their representation to achieve a fair distribution of tokens across languages.
2. Perform script unification for Indic languages wherever possible using `scripts/preprocess_translate.py` and concatenate all Indic data into a single file.
3. Train two SPM models, one for English and other for Indic side using the following:
```bash
spm_train --input=train.indic --model_prefix=<model_name> --vocab_size=<vocab_size> --character_coverage=1.0 --model_type=BPE
```
4. Copy the trained SPM models in the experiment directory mentioned earlier and learn the Fairseq dictionary using the following:
```bash
bash prepare_data_joint_training.sh <exp_dir>
```
5. You will need to use the same Fairseq dictionary for any subsequent fine-tuning experiments and refer to the steps described above ([link](#using-our-spm-model-and-fairseq-dictionary)).
## Training / Fine-tuning
After binarizing the data, you can use train.sh to train the models. We provide the default hyperparameters used in this work. You can modify the hyperparameters as per your requirement if needed. If you want to train the model on a customized architecture, then please define the architecture in `model_configs/custom_transformer.py`. You can start the model training with the following command:
```bash
bash train.sh <exp_dir> <model_arch>
```
- `<exp_dir>`: path to the directory containing the binarized data
- `<model_arch>`: custom transformer architecture used for model training
For fine-tuning, the initial steps remain the same. However, the `finetune.sh` script includes an additional argument, `pretrained_ckpt`, which specifies the model checkpoint to be loaded for further fine-tuning. You can perform fine-tuning using the following command:
```bash
bash finetune.sh <exp_dir> <model_arch> <pretrained_ckpt>
```
- `<exp_dir>`: path to the directory containing the binarized data
- `<model_arch>`: custom transformer architecture used for model training
- `transformer_18_18` - For IT2 Base models
- `transformer_base18L` - For IT2 Distilled models
- `<pretrained_ckpt>`: path to the fairseq model checkpoint to be loaded for further fine-tuning
You can download the model artifacts released as a part of this work from the [following section](#download-models-and-other-artifacts).
The pretrained checkpoints have 3 directories, a fairseq model directory and 2 CT-ported model directories. Please note that the CT2 models are provided only for efficient inference. For fine-tuning purposes you should use the `fairseq_model`. Post that you can use the [fairseq-ct2-converter](https://opennmt.net/CTranslate2/guides/fairseq.html) to port your fine-tuned checkpoints to CT2 for faster inference.
## Inference
### Fairseq Inference
In order to run inference on our pretrained models using bash interface, please use the following:
```bash
bash joint_translate.sh <infname> <outfname> <src_lang> <tgt_lang> <ckpt_dir>
```
- `infname`: path to the input file containing sentences
- `outfname`: path to the output file where the translations should be stored
- `src_lang`: source language
- `tgt_lang`: target language
- `ckpt_dir`: path to the fairseq model checkpoint directory
If you want to run the inference using python interface then please execute the following block of code from the root directory:
```python3
from inference.engine import Model
model = Model(ckpt_dir, model_type="fairseq")
sents = [sent1, sent2,...]
# for a batch of sentences
model.batch_translate(sents, src_lang, tgt_lang)
# for a paragraph
model.translate_paragraph(text, src_lang, tgt_lang)
```
### CT2 Inference
In order to run inference on CT2-ported model using python inference then please execute the following block of code from the root directory:
```python3
from inference.engine import Model
model = Model(ckpt_dir, model_type="ctranslate2")
sents = [sent1, sent2,...]
# for a batch of sentences
model.batch_translate(sents, src_lang, tgt_lang)
# for a paragraph
model.translate_paragraph(text, src_lang, tgt_lang)
```
## Evaluations
We consider the chrF++ as our primary metric. Additionally, we also report the BLEU and Comet scores.
We also perform statistical significance tests for each metric to ascertain whether the differences are statistically significant.
In order to run our evaluation scripts, you will need to organize the evaluation test sets into the following directory structure:
```bash
eval_benchmarks
βββ flores
β βββ eng_Latn-asm_Beng
β βββ test.eng_Latn
β βββ test.asm_Beng
βββ in22-gen
βββ in22-conv
βββ ntrex
βββ ...
```
To compute the BLEU and chrF++ scores for prediction file, you can use the following command:
```bash
bash compute_metrics.sh <pred_fname> <ref_fname> <tgt_lang>
```
- `pred_fname`: path to the model translations
- `ref_fname`: path to the reference translations
- `tgt_lang`: target language
In order to automate the inference over the individual test sets for En-Indic, you can use the following command:
```bash
bash eval.sh <devtest_data_dir> <ckpt_dir> <system>
```
- `<devtest_data_dir>`: path to the evaluation set with language pair subdirectories (for example, flores directory in the above tree structure)
- `<ckpt_dir>`: path to the fairseq model checkpoint directory
- `<system>`: system name suffix to store the predictions in the format `test.{lang}.pred.{system}`
In case of Indic-En evaluation, please use the following command:
```bash
bash eval_rev.sh <devtest_data_dir> <ckpt_dir> <system>
```
- `<devtest_data_dir>`: path to the evaluation set with language pair subdirectories (for example, flores directory in the above tree structure)
- `<ckpt_dir>`: path to the fairseq model checkpoint directory
- `<system>`: system name suffix to store the predictions in the format `test.{lang}.pred.{system}`
**_Note: You donβt need to reverse the test set directions for each language pair._**
In case of Indic-Indic evaluation, please use the following command:
```bash
bash pivot_eval.sh <devtest_data_dir> <pivot_lang> <src2pivot_ckpt_dir> <pivot2tgt_ckpt_dir> <system>
```
- `<devtest_data_dir>`: path to the evaluation set with language pair subdirectories (for example, flores directory in the above tree structure)
- `<pivot_lang>`: pivot language (default should be `eng_Latn`)
- `<src2pivot_ckpt_dir>`: path to the fairseq Indic-En model checkpoint directory
- `<pivot2tgt_ckpt_dir>`: path to the fairseq En-Indic model checkpoint directory
- `<system>`: system name suffix to store the predictions in the format test.{lang}.pred.{system}
In order to perform significance testing for BLEU and chrF++ metrics after you have the predictions for different systems, you can use the following command:
```bash
bash compute_comet_metrics_significance.sh <devtest_data_dir>
```
- `<devtest_data_dir>`: path to the evaluation set with language pair subdirectories (for example, flores directory in the above tree structure)
Similarly, to compute the COMET scores and perform significance testing on predictions of different systems, you can use the following command.
```bash
bash compute_comet_score.sh <devtest_data_dir>
```
- `<devtest_data_dir>`: path to the evaluation set with language pair subdirectories (for example, flores directory in the above tree structure)
Please note that as we compute significance tests with the same script and automate everything, it is best to have all the predictions for all the systems in place to avoid repeating anything.
Also, we define the systems in the script itself, if you want to try out other systems, make sure to edit it there itself.
### Baseline Evaluation
To generate the translation results for baseline models such as M2M-100, MBART, Azure, Google, and NLLB MoE, you can check the scripts provided in the "baseline_eval" directory of this repository. For NLLB distilled, you can either modify NLLB_MoE eval or use this [repository](https://github.com/pluiez/NLLB-inference). Similarly, for IndicTrans inference, please refer to this [repository](https://github.com/ai4bharat/IndicTrans).
You can download the translation outputs released as a part of this work from the [following section](#download-models-and-other-artifacts).
## LICENSE
The following table lists the licenses associated with the different artifacts released as a part of this work:
| Artifact | LICENSE |
| ----------------------------------------------------- | --------------------------------------------------------------------- |
| Existing Mined Corpora (NLLB & Samanantar) | [CC0](https://creativecommons.org/share-your-work/public-domain/cc0/) |
| Existing Seed Corpora (NLLB-Seed, ILCI, MASSIVE) | [CC0](https://creativecommons.org/share-your-work/public-domain/cc0/) |
| Newly Added Mined Corpora (Samanantar++ & Comparable) | [CC0](https://creativecommons.org/share-your-work/public-domain/cc0/) |
| Newly Added Seed Corpora (BPCC-H-Wiki & BPCC-H-Daily) | [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) |
| Newly Created IN-22 test set (IN22-Gen & IN22-Conv) | [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) |
| Back-translation data (BPCC-BT) | [CC0](https://creativecommons.org/share-your-work/public-domain/cc0/) |
| Model checkpoints | [MIT](https://github.com/ai4bharat/IndicTrans2/blob/main/LICENSE) |
The mined corpora collection (BPCC-Mined), existing seed corpora (NLLB-Seed, ILCI, MASSIVE), Backtranslation data (BPCC-BT), are released under the following licensing scheme:
- We do not own any of the text from which this data has been extracted.
- We license the actual packaging of this data under the Creative Commons [CC0 license (βno rights reservedβ)](https://creativecommons.org/share-your-work/public-domain/cc0/).
- To the extent possible under law, [AI4Bharat](https://ai4bharat.iitm.ac.in/) has waived all copyright and related or neighboring rights to BPCC-Mined, existing seed corpora (NLLB-Seed, ILCI, MASSIVE) and BPCC-BT.
## Citation
```bibtex
@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
```
|