File size: 2,167 Bytes
a280c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# MIT License
#
# Copyright (c) 2023 CNRS
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


from pyannote.audio import Pipeline, Audio
import torch


class EndpointHandler:
    def __init__(self, path=""):
        # initialize pretrained pipeline
        self._pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")

        # send pipeline to GPU if available
        if torch.cuda.is_available():
            self._pipeline.to(torch.device("cuda"))

        # initialize audio reader
        self._io = Audio()

    def __call__(self, data):
        inputs = data.pop("inputs", data)
        waveform, sample_rate = self._io(inputs)

        parameters = data.pop("parameters", dict())
        diarization = self.pipeline(
            {"waveform": waveform, "sample_rate": sample_rate}, **parameters
        )

        processed_diarization = [
            {
                "speaker": speaker,
                "start": f"{turn.start:.3f}",
                "end": f"{turn.end:.3f}",
            }
            for turn, _, speaker in diarization.itertracks(yield_label=True)
        ]

        return {"diarization": processed_diarization}