jymcc commited on
Commit
87f960a
·
1 Parent(s): 4d996f7
config.json ADDED
The diff for this file is too large to render. See raw diff
 
configuration_yi.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Yi model configuration"""
2
+ from transformers.configuration_utils import PretrainedConfig
3
+ from transformers.utils import logging
4
+
5
+ logger = logging.get_logger(__name__)
6
+
7
+ Yi_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
8
+
9
+
10
+ class YiConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`YiModel`]. It is used to instantiate an Yi
13
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
14
+ defaults will yield a similar configuration to that of the Yi model.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
17
+ documentation from [`PretrainedConfig`] for more information.
18
+
19
+
20
+ Args:
21
+ vocab_size (`int`, *optional*, defaults to 64000):
22
+ Vocabulary size of the Yi model. Defines the number of different tokens that can be represented by the
23
+ `inputs_ids` passed when calling [`YiModel`]
24
+ hidden_size (`int`, *optional*, defaults to 4096):
25
+ Dimension of the hidden representations.
26
+ intermediate_size (`int`, *optional*, defaults to 11008):
27
+ Dimension of the MLP representations.
28
+ num_hidden_layers (`int`, *optional*, defaults to 32):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ num_key_value_heads (`int`, *optional*):
33
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
34
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
35
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
36
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
37
+ by meanpooling all the original heads within that group. For more details checkout [this
38
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
39
+ `num_attention_heads`.
40
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
41
+ The non-linear activation function (function or string) in the decoder.
42
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
43
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048 or 4096).
45
+ initializer_range (`float`, *optional*, defaults to 0.02):
46
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
47
+ rms_norm_eps (`float`, *optional*, defaults to 1e-5):
48
+ The epsilon used by the rms normalization layers.
49
+ use_cache (`bool`, *optional*, defaults to `True`):
50
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
51
+ relevant if `config.is_decoder=True`.
52
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
53
+ Whether to tie weight embeddings
54
+ output_attentions (`bool`, *optional*, defaults to `False`):
55
+ Whether or not to output attentions.
56
+ rope_theta (`float`, *optional*, defaults to 5000000.0):
57
+ The base period of the RoPE embeddings.
58
+ Example:
59
+
60
+ ```python
61
+ >>> from transformers import YiModel, YiConfig
62
+
63
+ >>> # Initializing a Yi style configuration
64
+ >>> configuration = YiConfig()
65
+
66
+ >>> # Initializing a model from the Yi style configuration
67
+ >>> model = YiModel(configuration)
68
+
69
+ >>> # Accessing the model configuration
70
+ >>> configuration = model.config
71
+ ```"""
72
+ model_type = "Yi"
73
+ keys_to_ignore_at_inference = ["past_key_values"]
74
+
75
+ def __init__(
76
+ self,
77
+ vocab_size=64000,
78
+ hidden_size=4096,
79
+ intermediate_size=11008,
80
+ num_hidden_layers=32,
81
+ num_attention_heads=32,
82
+ num_key_value_heads=4,
83
+ hidden_act="silu",
84
+ max_position_embeddings=4096,
85
+ initializer_range=0.02,
86
+ rms_norm_eps=1e-5,
87
+ use_cache=True,
88
+ pad_token_id=0,
89
+ bos_token_id=1,
90
+ eos_token_id=2,
91
+ tie_word_embeddings=False,
92
+ output_attentions=False,
93
+ rope_theta=5000000.0,
94
+ **kwargs,
95
+ ):
96
+ self.vocab_size = vocab_size
97
+ self.max_position_embeddings = max_position_embeddings
98
+ self.hidden_size = hidden_size
99
+ self.intermediate_size = intermediate_size
100
+ self.num_hidden_layers = num_hidden_layers
101
+ self.num_attention_heads = num_attention_heads
102
+
103
+ # for backward compatibility
104
+ if num_key_value_heads is None:
105
+ num_key_value_heads = num_attention_heads
106
+
107
+ self.num_key_value_heads = num_key_value_heads
108
+ self.hidden_act = hidden_act
109
+ self.initializer_range = initializer_range
110
+ self.rms_norm_eps = rms_norm_eps
111
+ self.use_cache = use_cache
112
+ self.output_attentions = output_attentions
113
+ self.rope_theta = rope_theta
114
+
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_new_tokens": 2048,
6
+ "pad_token_id": 0,
7
+ "repetition_penalty": 1.1,
8
+ "temperature": 0.3,
9
+ "top_k": 5,
10
+ "top_p": 0.85,
11
+ "transformers_version": "4.33.1"
12
+ }
modeling_yi.py ADDED
@@ -0,0 +1,1140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch Yi model."""
2
+ import math
3
+ from typing import List, Optional, Tuple, Union
4
+ from threading import Thread
5
+
6
+ from queue import Queue
7
+ import torch.utils.checkpoint
8
+ from einops import repeat
9
+ from packaging import version
10
+ from torch import nn
11
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
12
+ from transformers.activations import ACT2FN
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ SequenceClassifierOutputWithPast,
17
+ )
18
+ from transformers.generation.utils import GenerationConfig
19
+ from transformers.modeling_utils import PreTrainedModel
20
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
21
+ from transformers.utils import (
22
+ add_start_docstrings,
23
+ add_start_docstrings_to_model_forward,
24
+ logging,
25
+ replace_return_docstrings,
26
+ )
27
+
28
+ from .configuration_yi import YiConfig
29
+
30
+ is_flash_attn_available = True
31
+ try:
32
+ from flash_attn import flash_attn_func, __version__
33
+
34
+ assert version.parse(__version__) >= version.parse(
35
+ "2.3.0"
36
+ ), "please update your flash_attn version (>= 2.3.0)"
37
+ except ModuleNotFoundError:
38
+ is_flash_attn_available = False
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CONFIG_FOR_DOC = "YiConfig"
43
+
44
+
45
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
46
+ def _make_causal_mask(
47
+ input_ids_shape: torch.Size,
48
+ dtype: torch.dtype,
49
+ device: torch.device,
50
+ past_key_values_length: int = 0,
51
+ ):
52
+ """
53
+ Make causal mask used for bi-directional self-attention.
54
+ """
55
+ bsz, tgt_len = input_ids_shape
56
+ mask = torch.full(
57
+ (tgt_len, tgt_len),
58
+ torch.tensor(torch.finfo(dtype).min, device=device),
59
+ device=device,
60
+ )
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat(
67
+ [
68
+ torch.zeros(
69
+ tgt_len, past_key_values_length, dtype=dtype, device=device
70
+ ),
71
+ mask,
72
+ ],
73
+ dim=-1,
74
+ )
75
+ return mask[None, None, :, :].expand(
76
+ bsz, 1, tgt_len, tgt_len + past_key_values_length
77
+ )
78
+
79
+
80
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
81
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
82
+ """
83
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
84
+ """
85
+ bsz, src_len = mask.size()
86
+ tgt_len = tgt_len if tgt_len is not None else src_len
87
+
88
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
89
+
90
+ inverted_mask = 1.0 - expanded_mask
91
+
92
+ return inverted_mask.masked_fill(
93
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
94
+ )
95
+
96
+
97
+ class YiRMSNorm(nn.Module):
98
+ def __init__(self, hidden_size, eps=1e-5):
99
+ """
100
+ YiRMSNorm is equivalent to T5LayerNorm
101
+ """
102
+ super().__init__()
103
+ self.weight = nn.Parameter(torch.ones(hidden_size))
104
+ self.variance_epsilon = eps
105
+
106
+ def forward(self, hidden_states):
107
+ input_dtype = hidden_states.dtype
108
+ hidden_states = hidden_states.to(torch.float32)
109
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
110
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
111
+
112
+ return self.weight * hidden_states.to(input_dtype)
113
+
114
+
115
+ ALL_LAYERNORM_LAYERS.append(YiRMSNorm)
116
+
117
+
118
+ class YiRotaryEmbedding(torch.nn.Module):
119
+ def __init__(self, dim, max_position_embeddings=4096, base=5000000, device=None):
120
+ super().__init__()
121
+
122
+ self.dim = dim
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.base = base
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device)
128
+
129
+ def _set_cos_sin_cache(self, seq_len, device):
130
+ self.max_seq_len_cached = seq_len
131
+ inv_freq = 1.0 / (
132
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
133
+ )
134
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
135
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
136
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
137
+ emb = torch.cat((freqs, freqs), dim=-1)
138
+ self.register_buffer(
139
+ "cos_cached", emb.cos()[None, None, :, :], persistent=False
140
+ )
141
+ self.register_buffer(
142
+ "sin_cached", emb.sin()[None, None, :, :], persistent=False
143
+ )
144
+
145
+ def forward(self, x, seq_len=None):
146
+ # x: [bs, num_attention_heads, seq_len, head_size]
147
+ if seq_len > self.max_seq_len_cached:
148
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device)
149
+
150
+ return (
151
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
152
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
153
+ )
154
+
155
+
156
+ def rotate_half(x):
157
+ """Rotates half the hidden dims of the input."""
158
+ x1 = x[..., : x.shape[-1] // 2]
159
+ x2 = x[..., x.shape[-1] // 2 :]
160
+ return torch.cat((-x2, x1), dim=-1)
161
+
162
+
163
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, flash_attn_available):
164
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
165
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
166
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
167
+ expand_dim = 2 if flash_attn_available else 1
168
+ cos = cos[position_ids].unsqueeze(expand_dim) # [bs, seq_len, dim]
169
+ sin = sin[position_ids].unsqueeze(expand_dim) # [bs, seq_len, dim]
170
+ q_embed = (q * cos) + (rotate_half(q) * sin)
171
+ k_embed = (k * cos) + (rotate_half(k) * sin)
172
+ return q_embed, k_embed
173
+
174
+
175
+ class YiMLP(nn.Module):
176
+ def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
177
+ super().__init__()
178
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
179
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
180
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
181
+ self.act_fn = ACT2FN[hidden_act]
182
+
183
+ def forward(self, x):
184
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
185
+
186
+
187
+ class YiAttention(nn.Module):
188
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
189
+
190
+ def __init__(self, config: YiConfig):
191
+ super().__init__()
192
+ self.config = config
193
+ self.hidden_size = config.hidden_size
194
+ self.num_heads = config.num_attention_heads
195
+ self.head_dim = self.hidden_size // self.num_heads
196
+ self.num_key_value_heads = config.num_key_value_heads
197
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
198
+ self.max_position_embeddings = config.max_position_embeddings
199
+
200
+ if (self.head_dim * self.num_heads) != self.hidden_size:
201
+ raise ValueError(
202
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
203
+ f" and `num_heads`: {self.num_heads})."
204
+ )
205
+ self.q_proj = nn.Linear(
206
+ self.hidden_size, self.num_heads * self.head_dim, bias=False
207
+ )
208
+ self.k_proj = nn.Linear(
209
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
210
+ )
211
+ self.v_proj = nn.Linear(
212
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
213
+ )
214
+ self.o_proj = nn.Linear(
215
+ self.num_heads * self.head_dim, self.hidden_size, bias=False
216
+ )
217
+
218
+ self.rotary_emb = YiRotaryEmbedding(
219
+ self.head_dim,
220
+ max_position_embeddings=self.max_position_embeddings,
221
+ base=self.config.rope_theta,
222
+ )
223
+
224
+ def forward(
225
+ self,
226
+ hidden_states: torch.Tensor,
227
+ attention_mask: Optional[torch.Tensor] = None,
228
+ position_ids: Optional[torch.LongTensor] = None,
229
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
230
+ output_attentions: bool = False,
231
+ use_cache: bool = False,
232
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
233
+ bsz, q_len, _ = hidden_states.size()
234
+
235
+ query_states = self.q_proj(hidden_states).view(
236
+ bsz, q_len, self.num_heads, self.head_dim
237
+ )
238
+
239
+ key_states = self.k_proj(hidden_states).view(
240
+ bsz, q_len, self.num_key_value_heads, self.head_dim
241
+ )
242
+ value_states = self.v_proj(hidden_states).view(
243
+ bsz, q_len, self.num_key_value_heads, self.head_dim
244
+ )
245
+
246
+ if not is_flash_attn_available:
247
+ if self.num_key_value_groups > 1:
248
+ key_states = repeat(
249
+ key_states, f"b n h d -> b n (h {self.num_key_value_groups}) d"
250
+ )
251
+ value_states = repeat(
252
+ value_states, f"b n h d -> b n (h {self.num_key_value_groups}) d"
253
+ )
254
+
255
+ # b n h d -> b h n d
256
+ query_states = query_states.transpose(1, 2)
257
+ key_states = key_states.transpose(1, 2)
258
+ value_states = value_states.transpose(1, 2)
259
+
260
+ seq_dim = 1 if is_flash_attn_available else 2
261
+ kv_seq_len = key_states.shape[seq_dim]
262
+ if past_key_value is not None:
263
+ kv_seq_len += past_key_value[0].shape[seq_dim]
264
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
265
+ query_states, key_states = apply_rotary_pos_emb(
266
+ query_states, key_states, cos, sin, position_ids, is_flash_attn_available
267
+ )
268
+
269
+ if past_key_value is not None:
270
+ # reuse k, v, self_attention
271
+ key_states = torch.cat([past_key_value[0], key_states], dim=seq_dim)
272
+ value_states = torch.cat([past_key_value[1], value_states], dim=seq_dim)
273
+
274
+ past_key_value = (key_states, value_states) if use_cache else None
275
+
276
+ if is_flash_attn_available:
277
+ attn_output = flash_attn_func(
278
+ query_states, key_states, value_states, dropout_p=0.0, causal=True
279
+ )
280
+ else:
281
+ attn_weights = torch.matmul(
282
+ query_states, key_states.transpose(2, 3)
283
+ ) / math.sqrt(self.head_dim)
284
+
285
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
286
+ raise ValueError(
287
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
288
+ f" {attn_weights.size()}"
289
+ )
290
+
291
+ if attention_mask is not None:
292
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
293
+ raise ValueError(
294
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is"
295
+ f"{attention_mask.size()}"
296
+ )
297
+ attn_weights = attn_weights + attention_mask
298
+ dtype_min = torch.tensor(
299
+ torch.finfo(attn_weights.dtype).min,
300
+ device=attn_weights.device,
301
+ dtype=attn_weights.dtype,
302
+ )
303
+ attn_weights = torch.max(attn_weights, dtype_min)
304
+
305
+ # upcast attention to fp32
306
+ attn_weights = nn.functional.softmax(
307
+ attn_weights, dim=-1, dtype=torch.float32
308
+ ).to(query_states.dtype)
309
+ attn_output = torch.matmul(attn_weights, value_states)
310
+
311
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
312
+ raise ValueError(
313
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
314
+ f" {attn_output.size()}"
315
+ )
316
+
317
+ if not is_flash_attn_available:
318
+ attn_output = attn_output.transpose(1, 2)
319
+
320
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
321
+
322
+ attn_output = self.o_proj(attn_output)
323
+
324
+ if not output_attentions:
325
+ attn_weights = None
326
+
327
+ return attn_output, attn_weights, past_key_value
328
+
329
+
330
+ class YiDecoderLayer(nn.Module):
331
+ def __init__(self, config: YiConfig):
332
+ super().__init__()
333
+
334
+ self.hidden_size = config.hidden_size
335
+ self.self_attn = YiAttention(config=config)
336
+ self.mlp = YiMLP(
337
+ hidden_size=self.hidden_size,
338
+ intermediate_size=config.intermediate_size,
339
+ hidden_act=config.hidden_act,
340
+ )
341
+
342
+ self.ln1 = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
343
+ self.ln2 = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
344
+
345
+ def forward(
346
+ self,
347
+ hidden_states: torch.Tensor,
348
+ attention_mask: Optional[torch.Tensor] = None,
349
+ position_ids: Optional[torch.LongTensor] = None,
350
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
351
+ output_attentions: Optional[bool] = False,
352
+ use_cache: Optional[bool] = False,
353
+ ) -> Tuple[
354
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
355
+ ]:
356
+ """
357
+ Args:
358
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
359
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
360
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
361
+ output_attentions (`bool`, *optional*):
362
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
363
+ returned tensors for more detail.
364
+ use_cache (`bool`, *optional*):
365
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
366
+ (see `past_key_values`).
367
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
368
+ """
369
+
370
+ residual = hidden_states
371
+
372
+ hidden_states = self.ln1(hidden_states)
373
+
374
+ # Self Attention
375
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
376
+ hidden_states=hidden_states,
377
+ attention_mask=attention_mask,
378
+ position_ids=position_ids,
379
+ past_key_value=past_key_value,
380
+ output_attentions=output_attentions,
381
+ use_cache=use_cache,
382
+ )
383
+ hidden_states = residual + hidden_states
384
+
385
+ # Fully Connected
386
+ residual = hidden_states
387
+ hidden_states = self.ln2(hidden_states)
388
+ hidden_states = self.mlp(hidden_states)
389
+ hidden_states = residual + hidden_states
390
+
391
+ outputs = (hidden_states,)
392
+
393
+ if output_attentions:
394
+ outputs += (self_attn_weights,)
395
+
396
+ if use_cache:
397
+ outputs += (present_key_value,)
398
+
399
+ return outputs
400
+
401
+
402
+ Yi_START_DOCSTRING = r"""
403
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
404
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
405
+ etc.)
406
+
407
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
408
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
409
+ and behavior.
410
+
411
+ Parameters:
412
+ config ([`YiConfig`]):
413
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
414
+ load the weights associated with the model, only the configuration. Check out the
415
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
416
+ """
417
+
418
+
419
+ @add_start_docstrings(
420
+ "The bare Yi Model outputting raw hidden-states without any specific head on top.",
421
+ Yi_START_DOCSTRING,
422
+ )
423
+ class YiPreTrainedModel(PreTrainedModel):
424
+ config_class = YiConfig
425
+ base_model_prefix = "model"
426
+ supports_gradient_checkpointing = True
427
+ _no_split_modules = ["YiDecoderLayer"]
428
+ _skip_keys_device_placement = "past_key_values"
429
+
430
+ def _init_weights(self, module):
431
+ std = self.config.initializer_range
432
+ if isinstance(module, nn.Linear):
433
+ module.weight.data.normal_(mean=0.0, std=std)
434
+ if module.bias is not None:
435
+ module.bias.data.zero_()
436
+ elif isinstance(module, nn.Embedding):
437
+ module.weight.data.normal_(mean=0.0, std=std)
438
+ if module.padding_idx is not None:
439
+ module.weight.data[module.padding_idx].zero_()
440
+
441
+ def _set_gradient_checkpointing(self, module, value=False):
442
+ if isinstance(module, YiModel):
443
+ module.gradient_checkpointing = value
444
+
445
+
446
+ Yi_INPUTS_DOCSTRING = r"""
447
+ Args:
448
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
449
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
450
+ it.
451
+
452
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
453
+ [`PreTrainedTokenizer.__call__`] for details.
454
+
455
+ [What are input IDs?](../glossary#input-ids)
456
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
457
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
458
+
459
+ - 1 for tokens that are **not masked**,
460
+ - 0 for tokens that are **masked**.
461
+
462
+ [What are attention masks?](../glossary#attention-mask)
463
+
464
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
465
+ [`PreTrainedTokenizer.__call__`] for details.
466
+
467
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
468
+ `past_key_values`).
469
+
470
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
471
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
472
+ information on the default strategy.
473
+
474
+ - 1 indicates the head is **not masked**,
475
+ - 0 indicates the head is **masked**.
476
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
477
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
478
+ config.n_positions - 1]`.
479
+
480
+ [What are position IDs?](../glossary#position-ids)
481
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
482
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
483
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
484
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
485
+
486
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
487
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
488
+
489
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
490
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
491
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
492
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
493
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
494
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
495
+ model's internal embedding lookup matrix.
496
+ use_cache (`bool`, *optional*):
497
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
498
+ `past_key_values`).
499
+ output_attentions (`bool`, *optional*):
500
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
501
+ tensors for more detail.
502
+ output_hidden_states (`bool`, *optional*):
503
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
504
+ more detail.
505
+ return_dict (`bool`, *optional*):
506
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
507
+ """
508
+
509
+
510
+ @add_start_docstrings(
511
+ "The bare Yi Model outputting raw hidden-states without any specific head on top.",
512
+ Yi_START_DOCSTRING,
513
+ )
514
+ class YiModel(YiPreTrainedModel):
515
+ """
516
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YiDecoderLayer`]
517
+
518
+ Args:
519
+ config: YiConfig
520
+ """
521
+
522
+ def __init__(self, config: YiConfig):
523
+ super().__init__(config)
524
+ self.padding_idx = config.pad_token_id
525
+ self.vocab_size = config.vocab_size
526
+
527
+ self.embed_tokens = nn.Embedding(
528
+ config.vocab_size, config.hidden_size, self.padding_idx
529
+ )
530
+ self.layers = nn.ModuleList(
531
+ [YiDecoderLayer(config) for _ in range(config.num_hidden_layers)]
532
+ )
533
+
534
+ self.norm = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
535
+
536
+ self.gradient_checkpointing = False
537
+ # Initialize weights and apply final processing
538
+ self.post_init()
539
+
540
+ def get_input_embeddings(self):
541
+ return self.embed_tokens
542
+
543
+ def set_input_embeddings(self, value):
544
+ self.embed_tokens = value
545
+
546
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
547
+ def _prepare_decoder_attention_mask(
548
+ self, attention_mask, input_ids, inputs_embeds, past_key_values_length
549
+ ):
550
+ input_shape = (
551
+ input_ids.shape if input_ids is not None else inputs_embeds.shape[:-1]
552
+ )
553
+ # create causal mask
554
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
555
+ combined_attention_mask = None
556
+ if input_shape[-1] > 1:
557
+ combined_attention_mask = _make_causal_mask(
558
+ input_shape,
559
+ inputs_embeds.dtype,
560
+ device=inputs_embeds.device,
561
+ past_key_values_length=past_key_values_length,
562
+ )
563
+
564
+ if attention_mask is not None:
565
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
566
+ expanded_attn_mask = _expand_mask(
567
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
568
+ ).to(inputs_embeds.device)
569
+ combined_attention_mask = (
570
+ expanded_attn_mask
571
+ if combined_attention_mask is None
572
+ else expanded_attn_mask + combined_attention_mask
573
+ )
574
+
575
+ return combined_attention_mask
576
+
577
+ @add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
578
+ def forward(
579
+ self,
580
+ input_ids: torch.LongTensor = None,
581
+ attention_mask: Optional[torch.Tensor] = None,
582
+ position_ids: Optional[torch.LongTensor] = None,
583
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
584
+ inputs_embeds: Optional[torch.FloatTensor] = None,
585
+ use_cache: Optional[bool] = None,
586
+ output_attentions: Optional[bool] = None,
587
+ output_hidden_states: Optional[bool] = None,
588
+ return_dict: Optional[bool] = None,
589
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
590
+ output_attentions = (
591
+ output_attentions
592
+ if output_attentions is not None
593
+ else self.config.output_attentions
594
+ )
595
+ output_hidden_states = (
596
+ output_hidden_states
597
+ if output_hidden_states is not None
598
+ else self.config.output_hidden_states
599
+ )
600
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
601
+
602
+ return_dict = (
603
+ return_dict if return_dict is not None else self.config.use_return_dict
604
+ )
605
+
606
+ # retrieve input_ids and inputs_embeds
607
+ if input_ids is not None and inputs_embeds is not None:
608
+ raise ValueError(
609
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
610
+ )
611
+ elif input_ids is not None:
612
+ batch_size, seq_length = input_ids.shape
613
+ elif inputs_embeds is not None:
614
+ batch_size, seq_length, _ = inputs_embeds.shape
615
+ else:
616
+ raise ValueError(
617
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
618
+ )
619
+
620
+ seq_length_with_past = seq_length
621
+ past_key_values_length = 0
622
+
623
+ if past_key_values is not None:
624
+ past_key_values_length = past_key_values[0][0].shape[2]
625
+ seq_length_with_past = seq_length_with_past + past_key_values_length
626
+
627
+ if position_ids is None:
628
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
629
+ position_ids = torch.arange(
630
+ past_key_values_length,
631
+ seq_length + past_key_values_length,
632
+ dtype=torch.long,
633
+ device=device,
634
+ )
635
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
636
+ else:
637
+ position_ids = position_ids.view(-1, seq_length).long()
638
+
639
+ if inputs_embeds is None:
640
+ inputs_embeds = self.embed_tokens(input_ids)
641
+
642
+ if not is_flash_attn_available:
643
+ # embed positions
644
+ if attention_mask is None:
645
+ attention_mask = torch.ones(
646
+ (batch_size, seq_length_with_past),
647
+ dtype=torch.bool,
648
+ device=inputs_embeds.device,
649
+ )
650
+ attention_mask = self._prepare_decoder_attention_mask(
651
+ attention_mask,
652
+ input_ids,
653
+ inputs_embeds,
654
+ past_key_values_length,
655
+ )
656
+ else:
657
+ attention_mask = None
658
+
659
+ hidden_states = inputs_embeds
660
+ if self.gradient_checkpointing and self.training:
661
+ if use_cache:
662
+ logger.warning_once(
663
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
664
+ )
665
+ use_cache = False
666
+
667
+ # decoder layers
668
+ all_hidden_states = () if output_hidden_states else None
669
+ all_self_attns = () if output_attentions else None
670
+ next_decoder_cache = () if use_cache else None
671
+
672
+ for idx, decoder_layer in enumerate(self.layers):
673
+ if output_hidden_states:
674
+ all_hidden_states += (hidden_states,)
675
+
676
+ past_key_value = (
677
+ past_key_values[idx] if past_key_values is not None else None
678
+ )
679
+
680
+ if self.gradient_checkpointing and self.training:
681
+
682
+ def create_custom_forward(module):
683
+ def custom_forward(*inputs):
684
+ # None for past_key_value
685
+ return module(*inputs, past_key_value, output_attentions)
686
+
687
+ return custom_forward
688
+
689
+ layer_outputs = torch.utils.checkpoint.checkpoint(
690
+ create_custom_forward(decoder_layer),
691
+ hidden_states,
692
+ attention_mask,
693
+ position_ids,
694
+ )
695
+ else:
696
+ layer_outputs = decoder_layer(
697
+ hidden_states,
698
+ attention_mask=attention_mask,
699
+ position_ids=position_ids,
700
+ past_key_value=past_key_value,
701
+ output_attentions=output_attentions,
702
+ use_cache=use_cache,
703
+ )
704
+
705
+ hidden_states = layer_outputs[0]
706
+
707
+ if use_cache:
708
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
709
+
710
+ if output_attentions:
711
+ all_self_attns += (layer_outputs[1],)
712
+
713
+ hidden_states = self.norm(hidden_states)
714
+ # add hidden states from the last decoder layer
715
+ if output_hidden_states:
716
+ all_hidden_states += (hidden_states,)
717
+
718
+ next_cache = next_decoder_cache if use_cache else None
719
+ if not return_dict:
720
+ return tuple(
721
+ v
722
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
723
+ if v is not None
724
+ )
725
+ return BaseModelOutputWithPast(
726
+ last_hidden_state=hidden_states,
727
+ past_key_values=next_cache,
728
+ hidden_states=all_hidden_states,
729
+ attentions=all_self_attns,
730
+ )
731
+
732
+
733
+ class TextIterStreamer:
734
+ def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
735
+ self.tokenizer = tokenizer
736
+ self.skip_prompt = skip_prompt
737
+ self.skip_special_tokens = skip_special_tokens
738
+ self.tokens = []
739
+ self.text_queue = Queue()
740
+ self.next_tokens_are_prompt = True
741
+
742
+ def put(self, value):
743
+ if self.skip_prompt and self.next_tokens_are_prompt:
744
+ self.next_tokens_are_prompt = False
745
+ else:
746
+ if len(value.shape) > 1:
747
+ value = value[0]
748
+ self.tokens.extend(value.tolist())
749
+ self.text_queue.put(
750
+ self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
751
+
752
+ def end(self):
753
+ self.text_queue.put(None)
754
+
755
+ def __iter__(self):
756
+ return self
757
+
758
+ def __next__(self):
759
+ value = self.text_queue.get()
760
+ if value is None:
761
+ raise StopIteration()
762
+ else:
763
+ return value
764
+
765
+
766
+ def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
767
+ def _parse_messages(messages, split_role="user"):
768
+ system, rounds = "", []
769
+ round = []
770
+ for i, message in enumerate(messages):
771
+ if message["role"] == split_role and round:
772
+ rounds.append(round)
773
+ round = []
774
+ round.append(message)
775
+ if round:
776
+ rounds.append(round)
777
+ return system, rounds
778
+
779
+ max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
780
+ max_input_tokens = model.config.max_position_embeddings - max_new_tokens
781
+ system, rounds = _parse_messages(messages, split_role="user")
782
+ max_history_tokens = max_input_tokens
783
+ roles = ('<问>:','<答>:')
784
+ sep = '\n'
785
+ history_tokens = []
786
+ for round in rounds[::-1]:
787
+ round_tokens = []
788
+ for message in round:
789
+ message["content"]
790
+ if message["role"] == "user":
791
+ round_tokens.extend(tokenizer.encode(roles[0]+message["content"]+sep))
792
+ else:
793
+ round_tokens.extend(tokenizer.encode(roles[1]+message["content"]+sep))
794
+ if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
795
+ history_tokens = round_tokens + history_tokens # concat left
796
+ if len(history_tokens) < max_history_tokens:
797
+ continue
798
+ break
799
+
800
+ input_tokens = history_tokens
801
+ if messages[-1]["role"] != "assistant":
802
+ input_tokens.extend(tokenizer.encode(roles[1]))
803
+ # debug
804
+ input_tokens = input_tokens[-max_input_tokens:] # truncate left
805
+ # print(tokenizer.decode(input_tokens),flush=True)
806
+ return torch.LongTensor([input_tokens]).to(model.device)
807
+
808
+
809
+ class YiForCausalLM(YiPreTrainedModel):
810
+ _tied_weights_keys = ["lm_head.weight"]
811
+
812
+ def __init__(self, config):
813
+ super().__init__(config)
814
+ self.model = YiModel(config)
815
+
816
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
817
+
818
+ # Initialize weights and apply final processing
819
+ self.post_init()
820
+
821
+ def get_input_embeddings(self):
822
+ return self.model.embed_tokens
823
+
824
+ def set_input_embeddings(self, value):
825
+ self.model.embed_tokens = value
826
+
827
+ def get_output_embeddings(self):
828
+ return self.lm_head
829
+
830
+ def set_output_embeddings(self, new_embeddings):
831
+ self.lm_head = new_embeddings
832
+
833
+ def set_decoder(self, decoder):
834
+ self.model = decoder
835
+
836
+ def get_decoder(self):
837
+ return self.model
838
+
839
+ @add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
840
+ @replace_return_docstrings(
841
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
842
+ )
843
+ def forward(
844
+ self,
845
+ input_ids: torch.LongTensor = None,
846
+ attention_mask: Optional[torch.Tensor] = None,
847
+ position_ids: Optional[torch.LongTensor] = None,
848
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
849
+ inputs_embeds: Optional[torch.FloatTensor] = None,
850
+ labels: Optional[torch.LongTensor] = None,
851
+ use_cache: Optional[bool] = None,
852
+ output_attentions: Optional[bool] = None,
853
+ output_hidden_states: Optional[bool] = None,
854
+ return_dict: Optional[bool] = None,
855
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
856
+ r"""
857
+ Args:
858
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
859
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
860
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
861
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
862
+
863
+ Returns:
864
+
865
+ Example:
866
+
867
+ ```python
868
+ >>> from transformers import AutoTokenizer, YiForCausalLM
869
+
870
+ >>> model = YiForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
871
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
872
+
873
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
874
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
875
+
876
+ >>> # Generate
877
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
878
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
879
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
880
+ ```"""
881
+
882
+ output_attentions = (
883
+ output_attentions
884
+ if output_attentions is not None
885
+ else self.config.output_attentions
886
+ )
887
+ output_hidden_states = (
888
+ output_hidden_states
889
+ if output_hidden_states is not None
890
+ else self.config.output_hidden_states
891
+ )
892
+ return_dict = (
893
+ return_dict if return_dict is not None else self.config.use_return_dict
894
+ )
895
+
896
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
897
+ outputs = self.model(
898
+ input_ids=input_ids,
899
+ attention_mask=attention_mask,
900
+ position_ids=position_ids,
901
+ past_key_values=past_key_values,
902
+ inputs_embeds=inputs_embeds,
903
+ use_cache=use_cache,
904
+ output_attentions=output_attentions,
905
+ output_hidden_states=output_hidden_states,
906
+ return_dict=return_dict,
907
+ )
908
+
909
+ hidden_states = outputs[0]
910
+ logits = self.lm_head(hidden_states)
911
+
912
+ loss = None
913
+ if labels is not None:
914
+ # Shift so that tokens < n predict n
915
+ shift_logits = logits[..., :-1, :].contiguous()
916
+ shift_labels = labels[..., 1:].contiguous()
917
+ # Flatten the tokens
918
+ loss_fct = CrossEntropyLoss()
919
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
920
+ shift_labels = shift_labels.view(-1)
921
+ # Enable model parallelism
922
+ shift_labels = shift_labels.to(shift_logits.device)
923
+ loss = loss_fct(shift_logits, shift_labels)
924
+
925
+ if not return_dict:
926
+ output = (logits,) + outputs[1:]
927
+ return (loss,) + output if loss is not None else output
928
+
929
+ return CausalLMOutputWithPast(
930
+ loss=loss,
931
+ logits=logits,
932
+ past_key_values=outputs.past_key_values,
933
+ hidden_states=outputs.hidden_states,
934
+ attentions=outputs.attentions,
935
+ )
936
+
937
+ def prepare_inputs_for_generation(
938
+ self,
939
+ input_ids,
940
+ past_key_values=None,
941
+ attention_mask=None,
942
+ inputs_embeds=None,
943
+ **kwargs,
944
+ ):
945
+ if past_key_values:
946
+ input_ids = input_ids[:, -1:]
947
+
948
+ position_ids = kwargs.get("position_ids", None)
949
+ if attention_mask is not None and position_ids is None:
950
+ # create position_ids on the fly for batch generation
951
+ position_ids = attention_mask.long().cumsum(-1) - 1
952
+ position_ids.masked_fill_(attention_mask == 0, 1)
953
+ if past_key_values:
954
+ position_ids = position_ids[:, -1].unsqueeze(-1)
955
+
956
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
957
+ if inputs_embeds is not None and past_key_values is None:
958
+ model_inputs = {"inputs_embeds": inputs_embeds}
959
+ else:
960
+ model_inputs = {"input_ids": input_ids}
961
+
962
+ model_inputs.update(
963
+ {
964
+ "position_ids": position_ids,
965
+ "past_key_values": past_key_values,
966
+ "use_cache": kwargs.get("use_cache"),
967
+ "attention_mask": attention_mask,
968
+ }
969
+ )
970
+ return model_inputs
971
+
972
+ @staticmethod
973
+ def _reorder_cache(past_key_values, beam_idx):
974
+ reordered_past = ()
975
+ for layer_past in past_key_values:
976
+ reordered_past += (
977
+ tuple(
978
+ past_state.index_select(0, beam_idx.to(past_state.device))
979
+ for past_state in layer_past
980
+ ),
981
+ )
982
+ return reordered_past
983
+
984
+ def generate_prompt(self,query, history):
985
+ if not history:
986
+ return f"<问>:{query}\n<答>:"
987
+ else:
988
+ prompt = ''
989
+ for i, (old_query, response) in enumerate(history):
990
+ prompt += "<问>:{}\n<答>:{}\n".format(old_query, response)
991
+ prompt += "<问>:{}\n<答>:".format(query)
992
+ return prompt
993
+
994
+ def HuatuoChat(self, tokenizer, messages: List[dict], stream=False,
995
+ generation_config: Optional[GenerationConfig]=None):
996
+ generation_config = generation_config or self.generation_config
997
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
998
+ if stream:
999
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
1000
+ Thread(target=self.generate, kwargs=dict(
1001
+ inputs=input_ids, streamer=streamer,
1002
+ generation_config=generation_config,
1003
+ )).start()
1004
+ return streamer
1005
+ else:
1006
+ outputs = self.generate(input_ids, generation_config=generation_config)
1007
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
1008
+ return response
1009
+
1010
+
1011
+ @add_start_docstrings(
1012
+ """
1013
+ The Yi Model transformer with a sequence classification head on top (linear layer).
1014
+
1015
+ [`YiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1016
+ (e.g. GPT-2) do.
1017
+
1018
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1019
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1020
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1021
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1022
+ each row of the batch).
1023
+ """,
1024
+ Yi_START_DOCSTRING,
1025
+ )
1026
+ class YiForSequenceClassification(YiPreTrainedModel):
1027
+ def __init__(self, config):
1028
+ super().__init__(config)
1029
+ self.num_labels = config.num_labels
1030
+ self.model = YiModel(config)
1031
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1032
+
1033
+ # Initialize weights and apply final processing
1034
+ self.post_init()
1035
+
1036
+ def get_input_embeddings(self):
1037
+ return self.model.embed_tokens
1038
+
1039
+ def set_input_embeddings(self, value):
1040
+ self.model.embed_tokens = value
1041
+
1042
+ @add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
1043
+ def forward(
1044
+ self,
1045
+ input_ids: torch.LongTensor = None,
1046
+ attention_mask: Optional[torch.Tensor] = None,
1047
+ position_ids: Optional[torch.LongTensor] = None,
1048
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1049
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1050
+ labels: Optional[torch.LongTensor] = None,
1051
+ use_cache: Optional[bool] = None,
1052
+ output_attentions: Optional[bool] = None,
1053
+ output_hidden_states: Optional[bool] = None,
1054
+ return_dict: Optional[bool] = None,
1055
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1056
+ r"""
1057
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1058
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1059
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1060
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1061
+ """
1062
+ return_dict = (
1063
+ return_dict if return_dict is not None else self.config.use_return_dict
1064
+ )
1065
+
1066
+ transformer_outputs = self.model(
1067
+ input_ids,
1068
+ attention_mask=attention_mask,
1069
+ position_ids=position_ids,
1070
+ past_key_values=past_key_values,
1071
+ inputs_embeds=inputs_embeds,
1072
+ use_cache=use_cache,
1073
+ output_attentions=output_attentions,
1074
+ output_hidden_states=output_hidden_states,
1075
+ return_dict=return_dict,
1076
+ )
1077
+ hidden_states = transformer_outputs[0]
1078
+ logits = self.score(hidden_states)
1079
+
1080
+ if input_ids is not None:
1081
+ batch_size = input_ids.shape[0]
1082
+ else:
1083
+ batch_size = inputs_embeds.shape[0]
1084
+
1085
+ if self.config.pad_token_id is None and batch_size != 1:
1086
+ raise ValueError(
1087
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1088
+ )
1089
+ if self.config.pad_token_id is None:
1090
+ sequence_lengths = -1
1091
+ else:
1092
+ if input_ids is not None:
1093
+ sequence_lengths = (
1094
+ torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1
1095
+ ).to(logits.device)
1096
+ else:
1097
+ sequence_lengths = -1
1098
+
1099
+ pooled_logits = logits[
1100
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1101
+ ]
1102
+
1103
+ loss = None
1104
+ if labels is not None:
1105
+ labels = labels.to(logits.device)
1106
+ if self.config.problem_type is None:
1107
+ if self.num_labels == 1:
1108
+ self.config.problem_type = "regression"
1109
+ elif self.num_labels > 1 and (
1110
+ labels.dtype == torch.long or labels.dtype == torch.int
1111
+ ):
1112
+ self.config.problem_type = "single_label_classification"
1113
+ else:
1114
+ self.config.problem_type = "multi_label_classification"
1115
+
1116
+ if self.config.problem_type == "regression":
1117
+ loss_fct = MSELoss()
1118
+ if self.num_labels == 1:
1119
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1120
+ else:
1121
+ loss = loss_fct(pooled_logits, labels)
1122
+ elif self.config.problem_type == "single_label_classification":
1123
+ loss_fct = CrossEntropyLoss()
1124
+ loss = loss_fct(
1125
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1126
+ )
1127
+ elif self.config.problem_type == "multi_label_classification":
1128
+ loss_fct = BCEWithLogitsLoss()
1129
+ loss = loss_fct(pooled_logits, labels)
1130
+ if not return_dict:
1131
+ output = (pooled_logits,) + transformer_outputs[1:]
1132
+ return ((loss,) + output) if loss is not None else output
1133
+
1134
+ return SequenceClassifierOutputWithPast(
1135
+ loss=loss,
1136
+ logits=pooled_logits,
1137
+ past_key_values=transformer_outputs.past_key_values,
1138
+ hidden_states=transformer_outputs.hidden_states,
1139
+ attentions=transformer_outputs.attentions,
1140
+ )
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ef9ad24e0081379bc37e55065e5462d9fbb065532b4a4fb8709d762ff801b7
3
+ size 9976140998
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3094adfcb6b75ca8a419f4bc73a5ab44e37993ca1d65cbc8d3b267976be6cfb1
3
+ size 9273336898
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenization_yi.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import Any, Dict, List, Optional, Tuple
4
+
5
+ import sentencepiece as spm
6
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
+ from transformers.utils import logging
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
12
+
13
+ PRETRAINED_VOCAB_FILES_MAP = {
14
+ "vocab_file": {},
15
+ "tokenizer_file": {},
16
+ }
17
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
18
+
19
+
20
+ class YiTokenizer(PreTrainedTokenizer):
21
+ """
22
+ Construct a Yi tokenizer. Based on byte-level Byte-Pair-Encoding.
23
+
24
+ Args:
25
+ vocab_file (`str`):
26
+ Path to the vocabulary file.
27
+ """
28
+
29
+ vocab_files_names = VOCAB_FILES_NAMES
30
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
31
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
32
+ model_input_names = ["input_ids", "attention_mask"]
33
+
34
+ def __init__(
35
+ self,
36
+ vocab_file,
37
+ unk_token="<unk>",
38
+ bos_token="<|startoftext|>",
39
+ eos_token="<|endoftext|>",
40
+ pad_token="<unk>",
41
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
42
+ add_bos_token=True,
43
+ add_eos_token=False,
44
+ clean_up_tokenization_spaces=False,
45
+ **kwargs,
46
+ ):
47
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
48
+ bos_token = (
49
+ AddedToken(bos_token, lstrip=False, rstrip=False)
50
+ if isinstance(bos_token, str)
51
+ else bos_token
52
+ )
53
+ eos_token = (
54
+ AddedToken(eos_token, lstrip=False, rstrip=False)
55
+ if isinstance(eos_token, str)
56
+ else eos_token
57
+ )
58
+ unk_token = (
59
+ AddedToken(unk_token, lstrip=False, rstrip=False)
60
+ if isinstance(unk_token, str)
61
+ else unk_token
62
+ )
63
+ pad_token = (
64
+ AddedToken(pad_token, lstrip=False, rstrip=False)
65
+ if isinstance(pad_token, str)
66
+ else pad_token
67
+ )
68
+ self.vocab_file = vocab_file
69
+ self.add_bos_token = add_bos_token
70
+ self.add_eos_token = add_eos_token
71
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
72
+ self.sp_model.Load(vocab_file)
73
+ super().__init__(
74
+ bos_token=bos_token,
75
+ eos_token=eos_token,
76
+ unk_token=unk_token,
77
+ pad_token=pad_token,
78
+ add_bos_token=add_bos_token,
79
+ add_eos_token=add_eos_token,
80
+ sp_model_kwargs=self.sp_model_kwargs,
81
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
82
+ **kwargs,
83
+ )
84
+
85
+ def __getstate__(self):
86
+ state = self.__dict__.copy()
87
+ state["sp_model"] = None
88
+ return state
89
+
90
+ def __setstate__(self, d):
91
+ self.__dict__ = d
92
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
93
+ self.sp_model.Load(self.vocab_file)
94
+
95
+ @property
96
+ def vocab_size(self):
97
+ """Returns vocab size"""
98
+ return self.sp_model.get_piece_size()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def convert_tokens_to_string(self, tokens):
120
+ """Converts a sequence of tokens (string) in a single string."""
121
+ current_sub_tokens = []
122
+ out_string = ""
123
+ prev_is_special = False
124
+ for i, token in enumerate(tokens):
125
+ # make sure that special tokens are not decoded using sentencepiece model
126
+ if token in self.all_special_tokens:
127
+ if not prev_is_special and i != 0:
128
+ out_string += " "
129
+ out_string += self.sp_model.decode(current_sub_tokens) + token
130
+ prev_is_special = True
131
+ current_sub_tokens = []
132
+ else:
133
+ current_sub_tokens.append(token)
134
+ prev_is_special = False
135
+ out_string += self.sp_model.decode(current_sub_tokens)
136
+ return out_string
137
+
138
+ def save_vocabulary(
139
+ self, save_directory, filename_prefix: Optional[str] = None
140
+ ) -> Tuple[str]:
141
+ """
142
+ Save the vocabulary and special tokens file to a directory.
143
+
144
+ Args:
145
+ save_directory (`str`):
146
+ The directory in which to save the vocabulary.
147
+
148
+ Returns:
149
+ `Tuple(str)`: Paths to the files saved.
150
+ """
151
+ if not os.path.isdir(save_directory):
152
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
153
+ return
154
+ out_vocab_file = os.path.join(
155
+ save_directory,
156
+ (filename_prefix + "-" if filename_prefix else "")
157
+ + VOCAB_FILES_NAMES["vocab_file"],
158
+ )
159
+
160
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
161
+ out_vocab_file
162
+ ) and os.path.isfile(self.vocab_file):
163
+ copyfile(self.vocab_file, out_vocab_file)
164
+ elif not os.path.isfile(self.vocab_file):
165
+ with open(out_vocab_file, "wb") as fi:
166
+ content_spiece_model = self.sp_model.serialized_model_proto()
167
+ fi.write(content_spiece_model)
168
+
169
+ return (out_vocab_file,)
170
+
171
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
172
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
173
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
174
+
175
+ output = bos_token_id + token_ids_0 + eos_token_id
176
+
177
+ if token_ids_1 is not None:
178
+ output = output + bos_token_id + token_ids_1 + eos_token_id
179
+
180
+ return output
181
+
182
+ def get_special_tokens_mask(
183
+ self,
184
+ token_ids_0: List[int],
185
+ token_ids_1: Optional[List[int]] = None,
186
+ already_has_special_tokens: bool = False,
187
+ ) -> List[int]:
188
+ """
189
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
190
+ special tokens using the tokenizer `prepare_for_model` method.
191
+
192
+ Args:
193
+ token_ids_0 (`List[int]`):
194
+ List of IDs.
195
+ token_ids_1 (`List[int]`, *optional*):
196
+ Optional second list of IDs for sequence pairs.
197
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
198
+ Whether or not the token list is already formatted with special tokens for the model.
199
+
200
+ Returns:
201
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
202
+ """
203
+ if already_has_special_tokens:
204
+ return super().get_special_tokens_mask(
205
+ token_ids_0=token_ids_0,
206
+ token_ids_1=token_ids_1,
207
+ already_has_special_tokens=True,
208
+ )
209
+
210
+ bos_token_id = [1] if self.add_bos_token else []
211
+ eos_token_id = [1] if self.add_eos_token else []
212
+
213
+ if token_ids_1 is None:
214
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
215
+ return (
216
+ bos_token_id
217
+ + ([0] * len(token_ids_0))
218
+ + eos_token_id
219
+ + bos_token_id
220
+ + ([0] * len(token_ids_1))
221
+ + eos_token_id
222
+ )
223
+
224
+ def create_token_type_ids_from_sequences(
225
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
226
+ ) -> List[int]:
227
+ """
228
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
229
+ sequence pair mask has the following format:
230
+
231
+ ```
232
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
233
+ | first sequence | second sequence |
234
+ ```
235
+
236
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
237
+
238
+ Args:
239
+ token_ids_0 (`List[int]`):
240
+ List of ids.
241
+ token_ids_1 (`List[int]`, *optional*):
242
+ Optional second list of IDs for sequence pairs.
243
+
244
+ Returns:
245
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
246
+ """
247
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
248
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
249
+
250
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
251
+
252
+ if token_ids_1 is not None:
253
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
254
+
255
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
3
+ size 1033105
tokenizer_config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_yi.YiTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<|startoftext|>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "<|endoftext|>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ },
36
+ "padding_side": "left",
37
+ "sp_model_kwargs": {},
38
+ "tokenizer_class": "YiTokenizer",
39
+ "unk_token": {
40
+ "__type": "AddedToken",
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": true,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }