File size: 1,764 Bytes
666353d 8414d36 8ba3a39 b408b7a 8ba3a39 b408b7a 8ba3a39 b408b7a 8ba3a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
datasets:
- FreedomIntelligence/PubMedVision
language:
- en
- zh
pipeline_tag: image-text-to-text
---
<div align="center">
<h1>
HuatuoGPT-Vision-34B
</h1>
</div>
<div align="center">
<a href="https://github.com/FreedomIntelligence/HuatuoGPT-Vision" target="_blank">GitHub</a> | <a href="https://arxiv.org/abs/2406.19280" target="_blank">Paper</a>
</div>
# <span id="Start">Introduction</span>
HuatuoGPT-Vision is a multimodal LLM for medical applications, built with the [PubMedVision dataset](https://huggingface.co/datasets/FreedomIntelligence/PubMedVision). HuatuoGPT-Vision-34B is trained based on Yi-1.5-34B using the LLaVA-v1.5 architecture.
# <span id="Start">Quick Start</span>
1. Get the model inference code from [Github](https://github.com/FreedomIntelligence/HuatuoGPT-Vision).
```bash
git clone https://github.com/FreedomIntelligence/HuatuoGPT-Vision.git
```
2. Model inference
```python
query = 'What does the picture show?'
image_paths = ['image_path1']
from cli import HuatuoChatbot
bot = HuatuoChatbot(huatuogpt_vision_model_path) # loads the model
output = bot.inference(query, image_paths) # generates
print(output) # Prints the model output
```
# <span id="Start">Citation</span>
```
@misc{chen2024huatuogptvisioninjectingmedicalvisual,
title={HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale},
author={Junying Chen and Ruyi Ouyang and Anningzhe Gao and Shunian Chen and Guiming Hardy Chen and Xidong Wang and Ruifei Zhang and Zhenyang Cai and Ke Ji and Guangjun Yu and Xiang Wan and Benyou Wang},
year={2024},
eprint={2406.19280},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2406.19280},
}
```
|