|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- timpal0l/Mistral-7B-v0.1-flashback-v2 |
|
- RJuro/munin-neuralbeagle-7b |
|
- AI-Sweden-Models/tyr |
|
base_model: |
|
- timpal0l/Mistral-7B-v0.1-flashback-v2 |
|
- RJuro/munin-neuralbeagle-7b |
|
- AI-Sweden-Models/tyr |
|
--- |
|
|
|
# SweStarling-ties |
|
|
|
SweStarling-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [timpal0l/Mistral-7B-v0.1-flashback-v2](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2) |
|
* [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b) |
|
* [AI-Sweden-Models/tyr](https://huggingface.co/AI-Sweden-Models/tyr) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: timpal0l/Mistral-7B-v0.1-flashback-v2 |
|
parameters: |
|
density: [1, 0.7, 0.1] # density gradient |
|
weight: 1.0 |
|
- model: RJuro/munin-neuralbeagle-7b |
|
parameters: |
|
density: 0.5 |
|
weight: [0, 0.3, 0.7, 1] # weight gradient |
|
- model: AI-Sweden-Models/tyr |
|
parameters: |
|
density: 0.33 |
|
weight: |
|
- filter: mlp |
|
value: 0.5 |
|
- value: 0 |
|
merge_method: ties |
|
base_model: mlabonne/NeuralBeagle14-7B |
|
parameters: |
|
normalize: true |
|
int8_mask: true |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "FredrikBL/SweStarling-ties" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |