SweStarling-ties / README.md
FredrikBL's picture
Upload folder using huggingface_hub
160d51f verified
|
raw
history blame
1.92 kB
---
tags:
- merge
- mergekit
- lazymergekit
- timpal0l/Mistral-7B-v0.1-flashback-v2
- RJuro/munin-neuralbeagle-7b
- AI-Sweden-Models/tyr
base_model:
- timpal0l/Mistral-7B-v0.1-flashback-v2
- RJuro/munin-neuralbeagle-7b
- AI-Sweden-Models/tyr
---
# SweStarling-ties
SweStarling-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [timpal0l/Mistral-7B-v0.1-flashback-v2](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2)
* [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b)
* [AI-Sweden-Models/tyr](https://huggingface.co/AI-Sweden-Models/tyr)
## 🧩 Configuration
```yaml
models:
- model: timpal0l/Mistral-7B-v0.1-flashback-v2
parameters:
density: [1, 0.7, 0.1] # density gradient
weight: 1.0
- model: RJuro/munin-neuralbeagle-7b
parameters:
density: 0.5
weight: [0, 0.3, 0.7, 1] # weight gradient
- model: AI-Sweden-Models/tyr
parameters:
density: 0.33
weight:
- filter: mlp
value: 0.5
- value: 0
merge_method: ties
base_model: mlabonne/NeuralBeagle14-7B
parameters:
normalize: true
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "FredrikBL/SweStarling-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```