File size: 2,118 Bytes
0e3af3a
9c7a2b0
 
 
 
 
 
 
 
0e3af3a
 
9c7a2b0
 
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
 
c0f9165
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
 
 
 
 
 
 
 
 
 
 
 
0e3af3a
9c7a2b0
0e3af3a
9c7a2b0
 
c0f9165
 
 
 
 
 
 
 
 
 
 
 
0e3af3a
 
9c7a2b0
0e3af3a
9c7a2b0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: shawgpt-ft-lr2e-05-wd0.001
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# shawgpt-ft-lr2e-05-wd0.001

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9648

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 4.6447        | 0.9231  | 3    | 4.2177          |
| 4.5898        | 1.8462  | 6    | 4.1835          |
| 4.5623        | 2.7692  | 9    | 4.1502          |
| 3.3855        | 4.0     | 13   | 4.1075          |
| 4.4896        | 4.9231  | 16   | 4.0769          |
| 4.4315        | 5.8462  | 19   | 4.0484          |
| 4.4089        | 6.7692  | 22   | 4.0230          |
| 3.2603        | 8.0     | 26   | 3.9952          |
| 4.3291        | 8.9231  | 29   | 3.9802          |
| 4.3261        | 9.8462  | 32   | 3.9702          |
| 4.3131        | 10.7692 | 35   | 3.9652          |
| 1.0208        | 11.0769 | 36   | 3.9648          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.19.1