visual-chatgpt-zh-vits
visual-chatgpt支持中文的windows版本
融合vits推断模块
官方论文: Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models
官方仓库:visual-chatgpt
fork from:visual-chatgpt-zh
Demo
System Architecture
Quick Start
# 1、下载代码
git clone https://github.com/FrankZxShen/visual-chatgpt-zh-vits.git
# 2、进入项目目录
cd visual-chatgpt-zh-vits
# 3、创建python环境并激活环境
conda create -n visgpt python=3.8
activate visgpt
# 4、安装环境依赖
pip install -r requirement.txt
# 5、确认api key
export OPENAI_API_KEY={Your_Private_Openai_Key}
# windows系统用set命令而不是export
set OPENAI_API_KEY={Your_Private_Openai_Key}
# 6、下载hf模型到指定目录
# 具体模型文件地址于hf_models
# 若需要vits推断功能将G.pth config.json放于vits_models下(目前仅支持日语?)
# Windows:下载pyopenjtalk Windows于text下
# 7、启动系统,这个例子我们加载了ImageCaptioning和Text2Image两个模型,
python visual_chatgpt_zh_vits.py
# 想要用哪个功能就可增加一些模型加载
python visual_chatgpt_zh_vits.py
--load ImageCaptioning_cuda:0,Text2Image_cuda:0 \
--pretrained_model_dir {your_hf_models_path} \
# 8、可以直接在visual_chatgpt_zh_vits.py 38行修改key 若需要vits 39行设定True
原作者:根据官方建议,不同显卡可以指定不同“--load”参数,显存不够的就可以时间换空间,把不重要的模型加载到cpu上,虽然推理慢但是好歹能跑不是?(手动狗头):
# Advice for CPU Users
python visual_chatgpt.py --load ImageCaptioning_cpu,Text2Image_cpu
# Advice for 1 Tesla T4 15GB (Google Colab)
python visual_chatgpt.py --load "ImageCaptioning_cuda:0,Text2Image_cuda:0"
# Advice for 4 Tesla V100 32GB
python visual_chatgpt.py --load "ImageCaptioning_cuda:0,ImageEditing_cuda:0,
Text2Image_cuda:1,Image2Canny_cpu,CannyText2Image_cuda:1,
Image2Depth_cpu,DepthText2Image_cuda:1,VisualQuestionAnswering_cuda:2,
InstructPix2Pix_cuda:2,Image2Scribble_cpu,ScribbleText2Image_cuda:2,
Image2Seg_cpu,SegText2Image_cuda:2,Image2Pose_cpu,PoseText2Image_cuda:2,
Image2Hed_cpu,HedText2Image_cuda:3,Image2Normal_cpu,
NormalText2Image_cuda:3,Image2Line_cpu,LineText2Image_cuda:3"
实测环境 Windows RTX3070 8G:若只需要ImageCaptioning和Text2Image两个模型的功能,对显存要求极低,理论上能跑AI绘图均可以(>4G,但速度很慢)?
limitations
img无法显示在gradio上?
Acknowledgement
We appreciate the open source of the following projects: