File size: 13,789 Bytes
30f8014
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7864ba9f0430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7864ba9f04c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7864ba9f0550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7864ba9f05e0>", "_build": "<function ActorCriticPolicy._build at 0x7864ba9f0670>", "forward": "<function ActorCriticPolicy.forward at 0x7864ba9f0700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7864ba9f0790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7864ba9f0820>", "_predict": "<function ActorCriticPolicy._predict at 0x7864ba9f08b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7864ba9f0940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7864ba9f09d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7864ba9f0a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7864ba9f4540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712912273069840549, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqntL17kpi6wh4WvIDZiDcqBP45NQ70tgAAAAAAAIA/ZgnePFy7RLpZiKA7zqgkOL0/UDpCSPW2AACAPwAAgD9mnBs8f9y2P5j48j5KoMI+6t0TvBK8jr0AAAAAAAAAAGZkFj2nx3Y+4a+1u0yhkL5KKuU8TTEBvQAAAAAAAAAAzcJKvK5ZkLr0kCe4D5Mes/N63jlAXkI3AACAPwAAgD9mfKQ9554nP0hR171EZJG+LNxbPUhP5b0AAAAAAAAAAM1qdLzp6CM+Y/E5PQ+wNr5TYR89dlhTvQAAAAAAAAAAmmJxvY8OcbrKo9m0PVSFsGPpeznqJh80AACAPwAAgD+a7O689oggurchSLqAgVq1aTMyO2CcZzkAAIA/AACAPwCV7r3DiTC6NOoMvN+cZbpM1sk6ny1IOwAAgD8AAIA/AHyTOz98Jz6tmFm9Jj1pvtMBtDvIXjy7AAAAAAAAAAAz1PK89uwWutMt2Lp0o4O2eF5WOwXw+zkAAIA/AACAPwAJ5ryPbnS61jUjOLFtGTN1LA+6nvM+twAAgD8AAIA/AKDKOuuI2z3EMSs7qZwvvsjtxLxi6yg9AAAAAAAAAAD1D4K+B/wnP0pCJTyJfr++dDcUviub8z0AAAAAAAAAAJrnKDzhqI26Ekxbu0upSzglRBY66yb2OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSLXyy2QXCMAWyUTegDjAF0lEdAlVvHko4MnnV9lChoBkdAZJgMOPNmlWgHTegDaAhHQJVill5GBnV1fZQoaAZHQGcgg13t8eFoB03oA2gIR0CVZhhnJ1aGdX2UKGgGR0BkGInH/95yaAdN6ANoCEdAlWa4F/x2CHV9lChoBkdAZX8O4oZydWgHTegDaAhHQJV6fCsOoYN1fZQoaAZHQGUkr8iwB5poB03oA2gIR0CVgVFjd56ddX2UKGgGR0Bj/NUdaMaTaAdN6ANoCEdAlYK59RaX8nV9lChoBkdAYZr4s3AEdWgHTegDaAhHQJWD4v38GcF1fZQoaAZHQHFysnZ00WNoB02mAmgIR0CVh7flp48mdX2UKGgGR0ByyPf779AHaAdNZgJoCEdAlYsTND+irXV9lChoBkdAcAvZYxL0z2gHTWoBaAhHQJWRKoGY8dR1fZQoaAZHQGDpod+5OJtoB03oA2gIR0CVlGTMaCL/dX2UKGgGR0BoLiq2jO9naAdN6ANoCEdAlZbmiDdxhnV9lChoBkdAZ0h15B1LamgHTegDaAhHQJWbj+Q2dd51fZQoaAZHQGQ4TmfXf65oB03oA2gIR0CVoCGRmseXdX2UKGgGR0BIPMVLzwtraAdNGgFoCEdAlaErvLHMlnV9lChoBkdAYwUMz/IbO2gHTegDaAhHQJWh3ho/Rmd1fZQoaAZHQGERAMUh3aBoB03oA2gIR0CVpXfoicG1dX2UKGgGR0BlzpU96kZaaAdN6ANoCEdAlahh9gF5fXV9lChoBkdATbvT3IuGsWgHS8FoCEdAlaqxY7q6fHV9lChoBkdAZehFb3XZoWgHTegDaAhHQJWuwr9VFQV1fZQoaAZHQG25DzqbBoFoB02fAmgIR0CVsK1UEPlNdX2UKGgGR0Bif0fLcKw7aAdN6ANoCEdAlbJ3TI/7i3V9lChoBkdAcWdWtEG7jGgHTUwDaAhHQJWyqqMm4RV1fZQoaAZHQGOwaUaAFxJoB03oA2gIR0CVsy88s+V1dX2UKGgGR0Bk04w7DEWJaAdN6ANoCEdAlc+0jxCpm3V9lChoBkdAbqS1P3ztkWgHTcECaAhHQJXP0JTl1bJ1fZQoaAZHQGdi9nscABFoB03oA2gIR0CV0Iazu4PPdX2UKGgGR0BkMdRm9QGfaAdN6ANoCEdAldMlSflIVnV9lChoBkdAcmR+NtIkJWgHTeUBaAhHQJXT983Mpw11fZQoaAZHQHCapOSGJvZoB02JAWgIR0CV1FBfrrxBdX2UKGgGR0BwDM4R28qXaAdN+AJoCEdAldThEWqLj3V9lChoBkdAcWPVVxS5y2gHTf0BaAhHQJXf/RRdhRZ1fZQoaAZHQHBtMPatcOdoB00zAWgIR0CV5TsnAqNIdX2UKGgGR0Blvw8GLUCraAdN6ANoCEdAlemjQeFL4HV9lChoBkdAVc32tdRiw2gHS7ZoCEdAle27EYO2A3V9lChoBkdAb6MfeUILPWgHTeoBaAhHQJXtyhsZYPp1fZQoaAZHQGRo16mfoRtoB03oA2gIR0CV73Jbt7a7dX2UKGgGR0BlW5soDxLCaAdN6ANoCEdAlfASNXHR1HV9lChoBkdAYpn8yeqaPWgHTegDaAhHQJX2IwUQCjl1fZQoaAZHQGMSe9Ba9sdoB03oA2gIR0CV/MTt9hJAdX2UKGgGR0BmHIwdsBQvaAdN6ANoCEdAlf//jXFtK3V9lChoBkdAZZstRNyo42gHTegDaAhHQJYAK+fywwF1fZQoaAZHQGQe2vKU3XJoB03oA2gIR0CWAJdLQHAzdX2UKGgGR0BwVf6Q/5ckaAdNRQFoCEdAlgFDL0SRKnV9lChoBkdAcdKs/IKc/mgHTX0BaAhHQJYCo0tRNyp1fZQoaAZHQHDtsIeHSF5oB01/AWgIR0CWAsWNFSbZdX2UKGgGR0BonXA0sOG1aAdN6ANoCEdAlhx9hd+ocnV9lChoBkdAcPATmnwXqWgHTdwBaAhHQJYc7HLidat1fZQoaAZHQGiHSpBHCoFoB03oA2gIR0CWHTeyiVSodX2UKGgGR0BxvnXYlIEsaAdNVQJoCEdAlh15VCHARHV9lChoBkdAZBpK15Sm7GgHTegDaAhHQJYf6MYMvyt1fZQoaAZHQGM8FIEr5IpoB03oA2gIR0CWIDiwSrYHdX2UKGgGR0BhHdmFrVOLaAdN6ANoCEdAliC5NKyv93V9lChoBkdAbjiNXHR1HWgHTVgDaAhHQJYm0BJZnth1fZQoaAZHQHFHIj0L+gloB03eAWgIR0CWLUdf9gnddX2UKGgGR0BxLidtl7MQaAdNVgJoCEdAljKCkTHsC3V9lChoBkdAbpw6uGKyfWgHTdUCaAhHQJY1ZSm65G11fZQoaAZHQG2GGG/N7jVoB03GAmgIR0CWOhx95QgtdX2UKGgGR0BxCswwj+rEaAdNMgNoCEdAlj0yE12q1nV9lChoBkdAYAorDIikf2gHTegDaAhHQJY9okRjBmB1fZQoaAZHQHGFvTgEU0xoB02wAWgIR0CWPg0UGmk4dX2UKGgGR0Bw4HX5FgDzaAdNgANoCEdAlkD86RyOrHV9lChoBkdAZ76fh/Aj6mgHTegDaAhHQJZGLzjFQ2x1fZQoaAZHQHHBe5z5oGpoB02QAWgIR0CWR1Pd2xIKdX2UKGgGR0BxUGUILPUsaAdN+AJoCEdAlkesynDR+nV9lChoBkdAcfXwHqu8smgHTUQBaAhHQJZfgEU0vXd1fZQoaAZHQHD3mhAWznloB01FAWgIR0CWX/GJN0vHdX2UKGgGR0Bw9sa1kUblaAdNVwFoCEdAll/8+A3DN3V9lChoBkdAZx2yZ8a4t2gHTegDaAhHQJZgeP1ct5F1fZQoaAZHQGYHsEq2BrhoB03oA2gIR0CWYM0Bfa6CdX2UKGgGR0BohgqAjIJaaAdN6ANoCEdAlmEMyrPt2XV9lChoBkdAZ9czP8hs7GgHTegDaAhHQJZhQ690zTF1fZQoaAZHQG2XzOX3QD5oB029AWgIR0CWYYeDFqBVdX2UKGgGR0BwWRUgjhUBaAdNJQJoCEdAlmH6lYU343V9lChoBkdAbfTNN8E3bWgHTUABaAhHQJZiHvv0AcV1fZQoaAZHQG/ICPhhpg1oB03fA2gIR0CWYr5AQg9vdX2UKGgGR0BmXwQ8OkLyaAdN6ANoCEdAlmN2e18b73V9lChoBkdAcjMi6xxDLWgHTQ0DaAhHQJZkRc+qzZ91fZQoaAZHQHEUm+PBBRhoB01aAWgIR0CWZWXWe6I4dX2UKGgGR0BsBYU34sVdaAdNGgJoCEdAlm+Y33pOe3V9lChoBkdAclHcS5AhS2gHTaABaAhHQJZv5SZSeiB1fZQoaAZHQG9wAFotcwBoB01ZAWgIR0CWdXied07sdX2UKGgGR0Bs+1sP8Q7LaAdN5wFoCEdAlneeYc/+sHV9lChoBkdAbSGiqQzUJGgHTfwBaAhHQJZ3+7Bfrrx1fZQoaAZHQHDbQm/nGKhoB031AWgIR0CWeBmPYFq0dX2UKGgGR0Bwiv/DLr5ZaAdNowFoCEdAlnjiYCyQgnV9lChoBkdAcC0HHWBjF2gHTcsBaAhHQJZ5rE9+w1R1fZQoaAZHQHBrLuUliSdoB026AWgIR0CWfaqgRK6GdX2UKGgGR0Bwx2uV5a/zaAdNiwJoCEdAln65mh/RV3V9lChoBkdAb0oJRfnfVWgHTYICaAhHQJaAHkWAPNF1fZQoaAZHQHJ7mLcbiqBoB00jAWgIR0CWgKdgv115dX2UKGgGR0Bukj3Cbc46aAdNLQFoCEdAloDWwJPZZnV9lChoBkdAUkM+NcW0q2gHS91oCEdAloLON96Tn3V9lChoBkdAS/M1sLv1DmgHTQEBaAhHQJaDn3i704B1fZQoaAZHQHLbikKu0TloB00TAWgIR0CWhKz/ZM+NdX2UKGgGR0Bvifb7CSA6aAdNRQFoCEdAloVNkOI683V9lChoBkdAaNXrTpgTiGgHTegDaAhHQJaHAHAymAN1fZQoaAZHQHDjYSlFc6hoB01OAWgIR0CWh+yBTXJ6dX2UKGgGR0Bw31TaTOgQaAdNGgFoCEdAloxN0eU6gnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}