File size: 12,193 Bytes
6c299e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import random
import numpy as np
import matplotlib.pyplot as plt
import spektral.datasets as ds
import networkx as nx
import tensorflow as tf
import gradio as gr

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import layers

from spektral.layers import GCNConv
from spektral.layers.convolutional import gcn_conv
from spektral.transforms import LayerPreprocess
from spektral.transforms import GCNFilter
from spektral.data import Dataset
from spektral.data import Graph
from spektral.data.loaders import SingleLoader


tf.config.run_functions_eagerly(True)
# Cora (public split)
data = ds.citation.Citation("Cora", random_split=False, normalize_x=False)


# generate visualisation for the test set
G = nx.from_scipy_sparse_matrix(data[0].a)
for index, val_mask in enumerate(data.mask_te):
    if val_mask == 0:
        G.remove_node(index)

default_plot = plt.figure()
default_ax = default_plot.add_subplot(111)
pos = nx.kamada_kawai_layout(G)
nx.draw(G, pos=pos, node_size=30, node_color="grey")
plt.title("unlabeled test set")


# apply gcn filter to adjacency matrix
data.apply(GCNFilter())


def add_fully_connected_layer(model_description, number_of_channels):
    if len(model_description) >= 20:
        return model_description
    else:
        return model_description[:-1] + [
            (str(number_of_channels), "fully connected layer"),
            model_description[-1],
        ]


def add_gcl_layer(model_description, number_of_channels):
    if len(model_description) >= 20:
        return model_description
    else:
        return model_description[:-1] + [
            (str(number_of_channels), "graph convolutional layer"),
            model_description[-1],
        ]


def add_dropout_layer(model_description, dropout_rate):
    if len(model_description) >= 20:
        return model_description
    else:
        return model_description[:-1] + [
            (str(dropout_rate), "dropout layer"),
            model_description[-1],
        ]


def fit_model(model_description, learning_rate, l2_regularization):
    # set seeds for reproducibility
    seed_number = 123

    os.environ["PYTHONHASHSEED"] = str(seed_number)
    random.seed(seed_number)
    np.random.seed(seed_number)
    tf.random.set_seed(seed_number)

    l2_reg_value = l2_regularization
    model_description = model_description[1:-1]

    class graph_nn(tf.keras.Model):
        def __init__(
            self,
        ):
            super().__init__()

            self.list_of_layers = []
            for tpl_value_layer in model_description:
                layer_name = tpl_value_layer[1]
                layer_value = tpl_value_layer[0]
                if layer_name == "fully connected layer":
                    self.list_of_layers.append(
                        layers.Dense(int(layer_value), activation="relu")
                    )
                elif layer_name == "graph convolutional layer":
                    self.list_of_layers.append(
                        gcn_conv.GCNConv(
                            channels=int(layer_value),
                            activation="relu",
                            kernel_regularizer=tf.keras.regularizers.l2(l2_reg_value),
                            use_bias=True,
                        )
                    )
                elif layer_name == "dropout layer":
                    self.list_of_layers.append(layers.Dropout(float(layer_value)))

            self.output_layer = layers.Dense(7, activation="softmax")

        def call(self, inputs):
            x, a = inputs

            for index, tpl_value_layer in enumerate(model_description):
                if tpl_value_layer[1] == ("graph convolutional layer"):
                    x = self.list_of_layers[index]([x, a])
                else:
                    x = self.list_of_layers[index](x)

            x = self.output_layer(x)

            return x

    model = graph_nn()
    model.compile(
        optimizer=Adam(learning_rate),
        loss=CategoricalCrossentropy(reduction="sum"),
        metrics=["accuracy"],
    )

    loader_tr = SingleLoader(data, sample_weights=data.mask_tr)
    loader_va = SingleLoader(data, sample_weights=data.mask_va)

    history = model.fit(
        loader_tr.load(),
        steps_per_epoch=loader_tr.steps_per_epoch,
        validation_data=loader_va.load(),
        validation_steps=loader_va.steps_per_epoch,
        epochs=2000,
        verbose=0,
        callbacks=[
            EarlyStopping(patience=30, restore_best_weights=True)
        ],  # , monitor="val_accuracy"
    )

    return plot_loss(history), get_accuracy(model)


def get_accuracy(model):

    loader_te = SingleLoader(data, sample_weights=data.mask_te)

    preds = model.predict(loader_te.load(), steps=loader_te.steps_per_epoch)

    ground_truths = data[0].y

    true_predictions = 0
    false_predictions = 0
    node_colors = []

    for index, val_mask in enumerate(data.mask_te):
        if val_mask == 0:
            continue
        if np.argmax(preds[index]) == np.argmax(ground_truths[index]):
            true_predictions += 1
            node_colors.append("green")
        else:
            false_predictions += 1
            node_colors.append("red")

    accuracy = true_predictions / (true_predictions + false_predictions)

    fig = plt.figure()
    ax = fig.add_subplot(111)

    nx.draw(G, pos=pos, node_size=30, node_color=node_colors)

    plt.title("accuracy on test-set: " + str(accuracy))

    return fig


def plot_loss(model_history):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    num_epochs = len(model_history.history["loss"])
    plt.plot(list(range(num_epochs)), model_history.history["loss"], label="train loss")
    # 3.57 times more validation instances thann test instances
    plt.plot(
        list(range(num_epochs)),
        np.array(model_history.history["val_loss"]) / 3.57,
        label="validation loss",
    )
    plt.plot(
        [num_epochs - 30, num_epochs - 30],
        [0, max(model_history.history["loss"])],
        "--",
        c="black",
        alpha=0.7,
        label="early stopping",
    )
    plt.legend(loc="upper right", bbox_to_anchor=(1, 1))

    return fig


def reset_model():
    return (
        [
            ("_Architecture_:  input", "_Legend_:"),
            ("output", "_Legend_:"),
        ],
        default_plot,
        None,
    )


demo = gr.Blocks()

with demo:
    gr.Markdown(
        """
    # GNN construction site
    Welcome to the GNN construction site, where you can build your individual GNN using graph convolutional layers (GCLs) and fully connected layers. The GCLs were implemented
    using [Spektral](https://github.com/danielegrattarola/spektral/  "https://github.com/danielegrattarola/spektral/"), which builds on the Keras API. 
    
    ### Data
    The input dataset is the public split of the Cora dataset ([benchmarks](https://paperswithcode.com/dataset/cora "https://paperswithcode.com/dataset/cora")). 
    Currently, the state of the art [model](https://github.com/chennnM/GCNII "https://github.com/chennnM/GCNII") (doi: 10.48550/arXiv.2007.02133) achieves an accuracy of 0.855 on the test set of this public split. The input data consists of
    node features and an adjacency matrix.
    ### How to build
    1. Use the sliders to adjust the number of neurons, channels or the dropout rate depending on which layer you want to add
    2. Adding layers to your network will update the current model architecture shown in the middle
    3. The "train and evaluate model" button will generate two figures after training your model, showing:
        - The loss during training
        - The performance on the test set (public split of Cora dataset)
    4. Reset your model and try different architectures
    """
    )
    with gr.Row():
        with gr.Column():
            accuracy_plot = gr.Plot(value=default_plot, label="accuracy plot")
        with gr.Column():
            loss_plot = gr.Plot(label="loss plot")

    with gr.Row():

        with gr.Column():
            with gr.Row():
                number_of_neurons = gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=32,
                    label="number of neurons for fully connected layer",
                )
            with gr.Row():
                number_of_channels = gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=32,
                    label="number of channels for graph conv. layer",
                )
            with gr.Row():
                dropout_rate = gr.Slider(
                    minimum=0, maximum=1, step=0.02, value=0.5, label="dropout rate"
                )
            with gr.Row():
                learning_rate = gr.Slider(
                    minimum=0.001,
                    maximum=0.02,
                    step=0.001,
                    value=0.005,
                    label="learning rate",
                )
                l2_regularization = gr.Slider(
                    minimum=0.00005,
                    maximum=0.001,
                    step=0.00005,
                    value=0.00025,
                    label="L2 regularization factor",
                )

        with gr.Column():
            with gr.Row():
                model_description = gr.Highlightedtext(
                    value=[
                        ("_Architecture_:  input", "_Legend_:"),
                        ("output", "_Legend_:"),
                    ],
                    label="current model",
                    show_legend=True,
                    color_map={
                        "_Legend_:": "white",
                        "fully connected layer": "blue",
                        "graph convolutional layer": "red",
                        "dropout layer": "yellow",
                    },
                )
            with gr.Row():
                button_add_fully_connected = gr.Button("add fully connected layer")
                button_add_fully_connected.click(
                    fn=add_fully_connected_layer,
                    inputs=[model_description, number_of_neurons],
                    outputs=model_description,
                )

            with gr.Row():
                button_add_fully_connected = gr.Button("add graph convolutional layer")
                button_add_fully_connected.click(
                    fn=add_gcl_layer,
                    inputs=[model_description, number_of_channels],
                    outputs=model_description,
                )

            with gr.Row():
                button_add_fully_connected = gr.Button("add dropout layer")
                button_add_fully_connected.click(
                    fn=add_dropout_layer,
                    inputs=[model_description, dropout_rate],
                    outputs=model_description,
                )

        with gr.Column():

            with gr.Row():
                button_fit_model = gr.Button("train and evaluate model")
                button_fit_model.click(
                    fn=fit_model,
                    inputs=[model_description, learning_rate, l2_regularization],
                    outputs=[loss_plot, accuracy_plot],
                )

            with gr.Row():
                button_reset_model = gr.Button("reset model")
                button_reset_model.click(
                    fn=reset_model,
                    inputs=None,
                    outputs=[model_description, accuracy_plot, loss_plot],
                )

            with gr.Row():
                gr.Markdown(
                    """
                    ### Tips:
                    - training and evaluating might take a moment
                    - hovering over the legend at "current model" will highlight the respective layers
                    - changing the learning rate or L2 regularization factor does not require a model reset
                
                """
                )


demo.launch()