File size: 8,296 Bytes
b0ae254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from pathlib import Path
import os
import PIL
from tqdm.auto import tqdm
import argparse

from tensorflow.keras import layers

from datasets import load_dataset
from transformers import DefaultDataCollator
from huggingface_hub import push_to_hub_keras


def parse_args(args=None):
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", type=str, default="mnist", help="Dataset to load from the HuggingFace hub.")
    parser.add_argument("--batch_size", type=int, default=128, help="Batch size to use during training")
    parser.add_argument("--number_of_examples_to_generate", type=int, default=4, help="Number of examples to be generated in inference mode")
    parser.add_argument(
        "--generator_hidden_size",
        type=int,
        default=28,
        help="Hidden size of the generator's feature maps.",
    )
    parser.add_argument("--latent_dim", type=int, default=100, help="Dimensionality of the latent space.")

    parser.add_argument(
        "--discriminator_hidden_size",
        type=int,
        default=28,
        help="Hidden size of the discriminator's feature maps.",
    )
    parser.add_argument(
        "--image_size",
        type=int,
        default=28,
        help="Spatial size to use when resizing images for training.",
    )
    parser.add_argument(
        "--num_channels",
        type=int,
        default=3,
        help="Number of channels in the training images. For color images this is 3.",
    )
    parser.add_argument("--num_epochs", type=int, default=5, help="number of epochs of training")
    parser.add_argument("--output_dir", type=Path, default=Path("./output"), help="Name of the directory to dump generated images during training.")
    parser.add_argument(
        "--push_to_hub",
        action="store_true",
        help="Whether to push the model to the HuggingFace hub after training.",
        )
    parser.add_argument(
        "--model_name",
        default=None,
        type=str,
        help="Name of the model on the hub.",
    )
    parser.add_argument(
        "--organization_name",
        default="huggan",
        type=str,
        help="Organization name to push to, in case args.push_to_hub is specified.",
    )
    args = parser.parse_args()
    
    if args.push_to_hub:
        assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
        assert args.model_name is not None, "Need a `model_name` to create a repo when `--push_to_hub` is passed."

    if args.output_dir is not None:
        os.makedirs(args.output_dir, exist_ok=True)
    
    return args


def stack_generator_layers(model, units):
    model.add(layers.Conv2DTranspose(units, (4, 4), strides=2, padding='same', use_bias=False))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())  
    return model 


def create_generator(channel, hidden_size, latent_dim):
    generator = tf.keras.Sequential()
    generator.add(layers.Input((latent_dim,))) # 
    generator.add(layers.Dense(hidden_size*4*7*7, use_bias=False, input_shape=(100,)))
    generator.add(layers.LeakyReLU())

    generator.add(layers.Reshape((7, 7, hidden_size*4)))

    units = [hidden_size*2, hidden_size*1]
    for unit in units:
        generator = stack_generator_layers(generator, unit)

    generator.add(layers.Conv2DTranspose(args.num_channels, (4, 4), strides=1, padding='same', use_bias=False, activation='tanh'))
    return generator


def stack_discriminator_layers(model, units, use_batch_norm=False, use_dropout=False):
    model.add(layers.Conv2D(units, (4, 4), strides=(2, 2), padding='same'))
    if use_batch_norm:
        model.add(layers.BatchNormalization())
    if use_dropout:
        model.add(layers.Dropout(0.1))
    model.add(layers.LeakyReLU())
    return model


def create_discriminator(channel, hidden_size, args):
    discriminator = tf.keras.Sequential()
    discriminator.add(layers.Input((args.image_size, args.image_size, args.num_channels)))
    discriminator = stack_discriminator_layers(discriminator, hidden_size, use_batch_norm = True,  use_dropout = True)
    discriminator = stack_discriminator_layers(discriminator, hidden_size * 2)
    discriminator = stack_discriminator_layers(discriminator,True, hidden_size*4)
    discriminator = stack_discriminator_layers(discriminator,True, hidden_size*16)

    discriminator.add(layers.Flatten())
    discriminator.add(layers.Dense(1))

    return discriminator


def discriminator_loss(real_image, generated_image):
    real_loss = cross_entropy(tf.ones_like(real_image), real_image)
    fake_loss = cross_entropy(tf.zeros_like(generated_image), generated_image)
    total_loss = real_loss + fake_loss
    return total_loss


@tf.function
def train_step(images):
    noise = tf.random.normal([128, 100])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
      generated_images = generator(noise, training=True)

      real_image = discriminator(images, training=True)
      generated_image = discriminator(generated_images, training=True)
      # calculate loss inside train step
      gen_loss = cross_entropy(tf.ones_like(generated_image), generated_image)
      disc_loss = discriminator_loss(real_image, generated_image)

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))


def generate_and_save_images(model, epoch, test_input, output_dir, number_of_examples_to_generate):
  
  predictions = model(test_input, training=False)

  fig = plt.figure(figsize=(number_of_examples_to_generate*4, number_of_examples_to_generate*16))

  for i in range(predictions.shape[0]):
      plt.subplot(1, number_of_examples_to_generate, i+1)
      if args.num_channels == 1:
        plt.imshow(predictions[i, :, :, :], cmap='gray')
      else:
        plt.imshow(predictions[i, :, :, :])
          
      plt.axis('off')

  plt.savefig(f'{output_dir}/image_at_epoch_{epoch}.png')


def train(dataset, epochs, output_dir, args):
  for epoch in range(epochs):
    print("Epoch:", epoch)
    for image_batch in tqdm(dataset):
      train_step(image_batch)

    generate_and_save_images(generator,
                             epoch + 1,
                             seed,
                             output_dir,
                             args.number_of_examples_to_generate)


def preprocess(examples):
    images = (np.asarray(examples["image"]).astype('float32')- 127.5) / 127.5
    images = np.expand_dims(images, -1)
    examples["pixel_values"] = images
    return examples


def preprocess_images(dataset, args):
    data_collator = DefaultDataCollator(return_tensors="tf")
    processed_dataset = dataset.map(preprocess)
    
    tf_train_dataset = processed_dataset["train"].to_tf_dataset(
	    columns=['pixel_values'],
	    shuffle=True,
	    batch_size=args.batch_size,
	    collate_fn=data_collator)

    return tf_train_dataset


if __name__ == "__main__":
    args = parse_args()
    print("Downloading dataset..")
    dataset = load_dataset(args.dataset)
    dataset= preprocess_images(dataset, args)
    print("Training model..")
    generator = create_generator(args.num_channels, args.generator_hidden_size, args.latent_dim)
    discriminator = create_discriminator(args.num_channels, args.discriminator_hidden_size, args)
    generator_optimizer = tf.keras.optimizers.Adam(1e-4)
    discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

    # create seed with dimensions of number of examples to generate and noise
    seed = tf.random.normal([args.number_of_examples_to_generate, args.latent_dim])

    cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

    train(dataset, args.num_epochs, args.output_dir, args)
    if args.push_to_hub is not None:

        push_to_hub_keras(generator, repo_path_or_name=f"{args.output_dir}/{args.model_name}",organization=args.organization_name)