convbert-base-finnish / train_tokenizer.py
aapot
Add 1M train step model
42db976
raw
history blame contribute delete
680 Bytes
from datasets import load_from_disk
from transformers import AutoTokenizer
dataset = load_from_disk("/researchdisk/training_dataset_full_deduplicated")
dataset = dataset["train"]
# We train on batch of texts, 1000 at a time here.
batch_size = 1000
corpus = (dataset[i : i + batch_size]["text"] for i in range(0, len(dataset), batch_size))
# ConvBERT uses Bert tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
#let's use same vocab size as in Finnish-NLP/roberta-large-finnish-v2 which is also very close to TurkuNLP/bert-base-finnish-cased-v1
new_tokenizer = tokenizer.train_new_from_iterator(corpus, vocab_size=50265)
new_tokenizer.save_pretrained("./")