File size: 6,914 Bytes
dbb94d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import json
import numpy as np
import re
import argparse
import os
import onnxruntime as ort
from optimum.onnxruntime import ORTModelForCausalLM
from transformers import AutoTokenizer, PretrainedConfig, GenerationConfig
import soundfile as sf
GENDER_MAP = {
"female": 0,
"male": 1,
}
LEVELS_MAP = {
"very_low": 0,
"low": 1,
"moderate": 2,
"high": 3,
"very_high": 4,
}
TASK_TOKEN_MAP = {
"vc": "<|task_vc|>",
"tts": "<|task_tts|>",
"asr": "<|task_asr|>",
"s2s": "<|task_s2s|>",
"t2s": "<|task_t2s|>",
"understand": "<|task_understand|>",
"caption": "<|task_cap|>",
"controllable_tts": "<|task_controllable_tts|>",
"prompt_tts": "<|task_prompt_tts|>",
"speech_edit": "<|task_edit|>",
}
def process_prompt(
text: str,
prompt_speech_path,
audio_tokenizer,
prompt_text: str = None,
):
global_token_ids, semantic_token_ids = audio_tokenizer.tokenize(
prompt_speech_path
)
global_tokens = "".join(
[f"<|bicodec_global_{i}|>" for i in global_token_ids.squeeze()]
)
# Prepare the input tokens for the model
if prompt_text is not None:
semantic_tokens = "".join(
[f"<|bicodec_semantic_{i}|>" for i in semantic_token_ids.squeeze()]
)
inputs = [
TASK_TOKEN_MAP["tts"],
"<|start_content|>",
prompt_text,
text,
"<|end_content|>",
"<|start_global_token|>",
global_tokens,
"<|end_global_token|>",
"<|start_semantic_token|>",
semantic_tokens,
]
else:
inputs = [
TASK_TOKEN_MAP["tts"],
"<|start_content|>",
text,
"<|end_content|>",
"<|start_global_token|>",
global_tokens,
"<|end_global_token|>",
]
inputs = "".join(inputs)
return inputs, global_token_ids
def process_prompt_control(gender, pitch, speed, text):
gender_id = GENDER_MAP[gender]
pitch_level_id = LEVELS_MAP[pitch]
speed_level_id = LEVELS_MAP[speed]
pitch_label_tokens = f"<|pitch_label_{pitch_level_id}|>"
speed_label_tokens = f"<|speed_label_{speed_level_id}|>"
gender_tokens = f"<|gender_{gender_id}|>"
attribte_tokens = "".join(
[gender_tokens, pitch_label_tokens, speed_label_tokens]
)
control_tts_inputs = [
TASK_TOKEN_MAP["controllable_tts"],
"<|start_content|>",
text,
"<|end_content|>",
"<|start_style_label|>",
attribte_tokens,
"<|end_style_label|>",
]
return "".join(control_tts_inputs)
def parse_arguments():
parser = argparse.ArgumentParser(description="Spark TTS inference script")
parser.add_argument("--text", type=str, required=True, help="Text for TTS generation")
parser.add_argument("--prompt", type=str, help="Transcript of prompt audio")
parser.add_argument("--gender_voice", type=str, default="male", help="Voice gender")
parser.add_argument("--clone_voice", type=str, default=None, help="Path to voice clone file")
parser.add_argument("--model_dir", type=str, required=True, help="Path to the model directory")
parser.add_argument("--flavor", type=str, default="q4", help="Model flavor: FP32, FP6, or quantized.")
parser.add_argument("--num_gpus", type=int, default=1, help="Number of GPUs to use.")
parser.add_argument("--pitch", type=str, default="moderate", help="Voice pitch.")
parser.add_argument("--speed", type=str, default="moderate", help="Voice pitch.")
return parser.parse_args()
def main():
args = parse_arguments()
use_gpu = False # "CUDAExecutionProvider" in ort.get_available_providers()
providers = [
("CUDAExecutionProvider", {"device_id": args.num_gpus - 1})
] if use_gpu else []
providers.append("CPUExecutionProvider")
work_dir = os.path.join(args.model_dir, "LLM")
if os.path.exists(work_dir):
config = PretrainedConfig.from_pretrained(work_dir)
gen_config = GenerationConfig.from_pretrained(work_dir)
suffix = "" if (
args.flavor is None or args.flavor == ""
) else f"_{args.flavor}"
model_path = os.path.join(work_dir, "onnx", f"model{suffix}.onnx")
sess_options = ort.SessionOptions()
ort_model = ort.InferenceSession(model_path, sess_options, providers=providers)
llm_model = ORTModelForCausalLM(
session=ort_model,
config=config,
generation_config=gen_config,
use_io_binding=True,
use_cache=True,
)
tokenizer = AutoTokenizer.from_pretrained(work_dir)
else:
raise ValueError(f"{model_path} does not exist.")
sess_options = ort.SessionOptions()
audio_detokenizer = ort.InferenceSession(
os.path.join(args.model_dir, "bicodec.onnx"),
sess_options,
providers=providers
)
# Process the prompt and clone_voice
text = args.text
text = "Some keyword arguments were passed to the ORTModelForCausalLM constructor that are not part of its signature: use_cache. These arguments will be ignored in the current version and will raise an error in the next version."
if args.clone_voice:
raise NotImplementedError()
print(f"Using voice clone: {args.clone_voice}")
prompt, global_tokens = process_prompt(args.text, args.clone_voice, args.prompt)
else:
print(f"Using {args.gender_voice} voice ")
prompt = process_prompt_control(args.gender_voice, args.pitch, args.speed, text)
print(f"Using prompt: {prompt}")
inputs = tokenizer([prompt], return_tensors="pt")
generated_ids = llm_model.generate(
**inputs,
max_new_tokens=3000,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.8,
)
# Trim the output tokens to remove the input tokens
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]
# Decode the generated tokens into text
predicts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
semantic_tokens = np.array(
[int(token) for token in re.findall(r"bicodec_semantic_(\d+)", predicts)]
)[None]
if args.clone_voice is None:
global_token = np.array(
[int(token) for token in re.findall(r"bicodec_global_(\d+)", predicts)]
)[None, None]
print(semantic_tokens.shape)
wav = audio_detokenizer.run(
["audio"],
{"semantic_tokens": semantic_tokens, "global_tokens": global_token}
)[0]
sf.write("test_spark.wav", wav[0, 0], 16000)
return
# run: python test_spark_tts.py --text "Your text to synthesize" --model_dir "/path/to/model"
if __name__ == "__main__":
main()
|