File size: 11,084 Bytes
6da2a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import math
import os
from typing import Any, Callable, Optional, Tuple
from monai import data, transforms as med
from monai.data import load_decathlon_datalist
import PIL.Image as PImage
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.datasets.folder import DatasetFolder, IMG_EXTENSIONS
from torchvision.transforms import transforms
from torch.utils.data import Dataset
import torch
import numpy as np
import cv2
try:
    from torchvision.transforms import InterpolationMode
    interpolation = InterpolationMode.BICUBIC
except:
    import PIL
    interpolation = PIL.Image.BICUBIC
from monai.transforms.transform import LazyTransform, MapTransform, RandomizableTransform
import random


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f: img: PImage.Image = PImage.open(f).convert('RGB')
    return img


class ImageNetDataset(DatasetFolder):
    def __init__(
            self,
            imagenet_folder: str,
            train: bool,
            transform: Callable,
            is_valid_file: Optional[Callable[[str], bool]] = None,
    ):
        imagenet_folder = os.path.join(imagenet_folder, 'train' if train else 'val')
        super(ImageNetDataset, self).__init__(
            imagenet_folder,
            loader=pil_loader,
            extensions=IMG_EXTENSIONS if is_valid_file is None else None,
            transform=transform,
            target_transform=None, is_valid_file=is_valid_file
        )
        
        self.samples = tuple(img for (img, label) in self.samples)
        self.targets = None # this is self-supervised learning so we don't need labels
    
    def __getitem__(self, index: int) -> Any:
        img_file_path = self.samples[index]
        return self.transform(self.loader(img_file_path))


def build_dataset_to_pretrain(dataset_path, input_size) -> Dataset:
    """
    You may need to modify this function to return your own dataset.
    Define a new class, a subclass of `Dataset`, to replace our ImageNetDataset.
    Use dataset_path to build your image file path list.
    Use input_size to create the transformation function for your images, can refer to the `trans_train` blow. 
    
    :param dataset_path: the folder of dataset
    :param input_size: the input size (image resolution)
    :return: the dataset used for pretraining
    """
    trans_train = transforms.Compose([
        transforms.RandomResizedCrop(input_size, scale=(0.67, 1.0), interpolation=interpolation),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
    ])
    
    dataset_path = os.path.abspath(dataset_path)
    for postfix in ('train', 'val'):
        if dataset_path.endswith(postfix):
            dataset_path = dataset_path[:-len(postfix)]
    
    dataset_train = ImageNetDataset(imagenet_folder=dataset_path, transform=trans_train, train=True)
    print_transform(trans_train, '[pre-train]')
    return dataset_train


def build_meddataset_to_pretrain(dataset_path, input_size) -> Dataset:
    """
    You may need to modify this function to return your own dataset.
    Define a new class, a subclass of `Dataset`, to replace our ImageNetDataset.
    Use dataset_path to build your image file path list.
    Use input_size to create the transformation function for your images, can refer to the `trans_train` blow.

    :param dataset_path: the folder of dataset
    :param input_size: the input size (image resolution)
    :return: the dataset used for pretraining
    """
    trans_train = transforms.Compose([
        transforms.RandomResizedCrop(input_size, scale=(0.67, 1.0), interpolation=interpolation),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
    ])

    dataset_path = os.path.abspath(dataset_path)


    dataset_train = MedicalDataSets(base_dir=dataset_path, transform=trans_train)
    print_transform(trans_train, '[pre-train]')
    return dataset_train



class MedicalDataSets(Dataset):
    def __init__(
        self,
        base_dir=None,
        transform=None,
    ):
        self._base_dir = base_dir
        self.sample_list = []
        self.sample_list = os.listdir(self._base_dir)
        self.transform = transform
        print("total {}".format(len(self.sample_list)))

    def __len__(self):
        return len(self.sample_list)

    def __getitem__(self, idx):
        case = self.sample_list[idx]
        img = PImage.open(os.path.join(self._base_dir, case)).convert('RGB')
        aug = self.transform(img)
        return aug

def print_transform(transform, s):
    print(f'Transform {s} = ')
    for t in transform.transforms:
        print(t)
    print('---------------------------\n')


class Sampler(torch.utils.data.Sampler):
    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.shuffle = shuffle
        self.make_even = make_even
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        indices = list(range(len(self.dataset)))
        self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas])

    def __iter__(self):
        if self.shuffle:
            g = torch.Generator()
            g.manual_seed(self.epoch)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))
        if self.make_even:
            if len(indices) < self.total_size:
                if self.total_size - len(indices) < len(indices):
                    indices += indices[: (self.total_size - len(indices))]
                else:
                    extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices))
                    indices += [indices[ids] for ids in extra_ids]
            assert len(indices) == self.total_size
        indices = indices[self.rank : self.total_size : self.num_replicas]
        self.num_samples = len(indices)
        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch

class RandScaleCropdPlusScaleByMidDimSampled(MapTransform):
    def __init__(self, keys, mode='area', max_size=128,allow_missing_keys=False,num_samples=4,max_radio=0.8,min_radio=0.5):
        self.keys = keys
        self.mode = mode
        self.allow_missing_keys = allow_missing_keys
        self.max_size=max_size
        self.num_samples = num_samples
        self.max_radio=max_radio
        self.min_radio=min_radio

    def __call__(self, data):
        outputs = []
        for i in range(self.num_samples):
            random_number = round(random.uniform(self.min_radio, self.max_radio), 2)
            _data = dict(data)
            for key in self.keys:
                cropper= med.RandScaleCropd(keys=[key],roi_scale=random_number)
                _data[key] = cropper(_data)[key]
                ct_tensor = _data[key]
                sorted_numbers = sorted(ct_tensor.shape[1:])
                scale_factor = self.max_size / sorted_numbers[1]
                new_size = [int(d * scale_factor)
                            for d in ct_tensor.shape[1:]]

                resizer = med.Resized(keys=[key],
                                             spatial_size=new_size,
                                             mode=self.mode,
                                             allow_missing_keys=self.allow_missing_keys)
                _data[key] = resizer(_data)[key]

            outputs.append(_data)

        return outputs




def get_loader(data_dir, size):
    datalist_json = os.path.join(data_dir, "dataset.json")
    train_transform = med.Compose(
    [
        med.LoadImaged(keys=["image"], allow_missing_keys=True),
        med.AddChanneld(keys=["image"], allow_missing_keys=True),
        med.Orientationd(keys=["image"], axcodes="RAS", allow_missing_keys=True),
        med.Spacingd(keys=["image"], pixdim=(1.5, 1.5, 1.5), mode="bilinear", allow_missing_keys=True),
        med.ScaleIntensityRanged(keys=["image"], a_min=-175, a_max=250, b_min=0.0, b_max=1.0, clip=True),
        med.CropForegroundd(keys=["image"], source_key="image", allow_missing_keys=True),
        med.SpatialPadd(keys=["image"], spatial_size=(size, size, size), mode='constant'),
        med.RandCropByPosNegLabeld(
            spatial_size=(size, size, size),
            keys=["image"],
            label_key="image",
            pos=1,
            neg=0,
            num_samples=4,
        ),
        med.RandFlipd(keys=["image"],
                            prob=0.2,
                            spatial_axis=0),
        med.RandFlipd(keys=["image"],
                            prob=0.2,
                            spatial_axis=1),
        med.RandFlipd(keys=["image"],
                            prob=0.1,
                            spatial_axis=2),
        med.ToTensord(keys=["image"]),
    ])
    # val_transform = transforms.Compose(
    #     [
    #         transforms.LoadImaged(keys=["image", "label"]),
    #         transforms.AddChanneld(keys=["image", "label"]),
    #         transforms.Orientationd(keys=["image", "label"], axcodes="RAS"),
    #         transforms.Spacingd(
    #             keys=["image", "label"], pixdim=(1, 1, 1), mode=("bilinear", "nearest")
    #         ),
    #         transforms.ScaleIntensityRanged(
    #             keys=["image"], a_min=-175.0, a_max=250.0, b_min=0.0, b_max=1.0, clip=True
    #         ),
    #         transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
    #         transforms.ToTensord(keys=["image", "label"]),
    #     ]
    # )

    datalist = load_decathlon_datalist(datalist_json, True, "training", base_dir=data_dir)
    # train_ds = data.Dataset(data=datalist, transform=train_transform)
    # train_ds = data.CacheDataset(data=datalist, transform=train_transform)
    # train_ds = data.SmartCacheDataset(data=datalist, transform=train_transform, replace_rate=0.7, cache_num=256,  num_init_workers=4, num_replace_workers=4)
    train_ds= data.CacheNTransDataset(data=datalist, transform=train_transform, cache_n_trans=6, cache_dir="/fenghetang/3d/pretrain/MM/cache_dataset")
    return train_ds