File size: 12,268 Bytes
6da2a44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import torch
import torch.nn as nn
from timm.models.layers import DropPath
_cur_active: torch.Tensor = None # B1fff
# todo: try to use `gather` for speed?
def _get_active_ex_or_ii(H, W, D, returning_active_ex=True):
h_repeat, w_repeat, d_repeat = H // _cur_active.shape[-3], W // _cur_active.shape[-2], D // _cur_active.shape[-1]
active_ex = _cur_active.repeat_interleave(h_repeat, dim=2).repeat_interleave(w_repeat, dim=3).repeat_interleave(d_repeat, dim=4)
return active_ex if returning_active_ex else active_ex.squeeze(1).nonzero(as_tuple=True) # ii: bi, hi, wi
def sp_conv_forward(self, x: torch.Tensor):
x = super(type(self), self).forward(x)
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=True) # (BCHW) *= (B1HW), mask the output of conv
return x
def sp_bn_forward(self, x: torch.Tensor):
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=False)
bhwdc = x.permute(0, 2, 3, 4, 1)
nc = bhwdc[ii] # select the features on non-masked positions to form a flatten feature `nc`
nc = super(type(self), self).forward(nc) # use BN1d to normalize this flatten feature `nc`
bchwd = torch.zeros_like(bhwdc)
bchwd[ii] = nc
bchwd = bchwd.permute(0, 4, 1, 2, 3)
return bchwd
def sp_in_forward(self, x: torch.Tensor):
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=False)
bhwdc = x.permute(0, 2, 3, 4, 1)
cn = bhwdc[ii].permute(1,
0) # select the features on non-masked positions to form a flatten feature `nc` [17787, 3]
C, N = cn.shape
bcl = cn.reshape(C, -1, x.shape[0]).permute(2, 0, 1)
bcl = super(type(self), self).forward(bcl) # use BN1d to normalize this flatten feature `nc`
nc = bcl.permute(1, 2, 0).reshape(C, -1).permute(1, 0)
bchwd = torch.zeros_like(bhwdc)
bchwd[ii] = nc
bchwd = bchwd.permute(0, 4, 1, 2, 3)
return bchwd
class SparseConv3d(nn.Conv3d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseMaxPooling(nn.MaxPool3d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseAvgPooling(nn.AvgPool3d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseBatchNorm3d(nn.BatchNorm1d):
forward = sp_bn_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseSyncBatchNorm3d(nn.SyncBatchNorm):
forward = sp_bn_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseInstanceNorm3d(nn.InstanceNorm1d):
forward = sp_in_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseConvNeXtLayerNorm(nn.LayerNorm):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", sparse=True):
if data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
super().__init__(normalized_shape, eps, elementwise_affine=True)
self.data_format = data_format
self.sparse = sparse
def forward(self, x):
if x.ndim == 5: # BHWDC or BCHWD
if self.data_format == "channels_last": # BHWDC
if self.sparse:
ii = _get_active_ex_or_ii(H=x.shape[1], W=x.shape[2], D=x.shape[3], returning_active_ex=False)
nc = x[ii]
nc = super(SparseConvNeXtLayerNorm, self).forward(nc)
x = torch.zeros_like(x)
x[ii] = nc
return x
else:
return super(SparseConvNeXtLayerNorm, self).forward(x)
else: # channels_first, BCHWD
if self.sparse:
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=False)
bhwc = x.permute(0, 2, 3, 4, 1)
nc = bhwc[ii]
nc = super(SparseConvNeXtLayerNorm, self).forward(nc)
x = torch.zeros_like(bhwc)
x[ii] = nc
return x.permute(0, 4, 1, 2, 3)
else:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None, None] * x + self.bias[:, None, None, None]
return x
else: # BLC or BC
if self.sparse:
raise NotImplementedError
else:
return super(SparseConvNeXtLayerNorm, self).forward(x)
def __repr__(self):
return super(SparseConvNeXtLayerNorm, self).__repr__()[
:-1] + f', ch={self.data_format.split("_")[-1]}, sp={self.sparse})'
class SparseConvNeXtBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, in_channels, out_channels, kernel_size=7, exp_r=4, do_res=False, drop_path=0.,
layer_scale_init_value=1e-6, sparse=True):
super().__init__()
self.do_res = do_res
self.dwconv = nn.Conv3d(in_channels, in_channels, kernel_size=kernel_size, padding=kernel_size // 2,
groups=in_channels) # depthwise conv
self.norm = SparseConvNeXtLayerNorm(in_channels, eps=1e-6, sparse=sparse)
self.pwconv1 = nn.Linear(in_channels,
exp_r * in_channels) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(exp_r * in_channels, out_channels)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((out_channels)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path: nn.Module = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.sparse = sparse
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 4, 1) # (N, C, H, W, D) -> (N, H, W, D, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x) # GELU(0) == (0), so there is no need to mask x (no need to `x *= _get_active_ex_or_ii`)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 4, 1, 2, 3) # (N, H, W, C) -> (N, C, H, W)
if self.sparse:
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=True)
if self.do_res:
x = input + self.drop_path(x)
return x
def __repr__(self):
return super(SparseConvNeXtBlock, self).__repr__()[:-1] + f', sp={self.sparse})'
class SparseEncoder(nn.Module):
def __init__(self, encoder, input_size, sbn=False, verbose=False):
super(SparseEncoder, self).__init__()
self.embeddings = SparseEncoder.dense_model_to_sparse(m=encoder.embeddings, verbose=verbose, sbn=sbn)
self.mae = encoder.mae
# self.encoder = SparseEncoder.dense_model_to_sparse(m=encoder, verbose=verbose, sbn=sbn)
self.input_size, self.downsample_raito, self.enc_feat_map_chs = input_size, encoder.get_downsample_ratio(), encoder.get_feature_map_channels()
@staticmethod
def dense_model_to_sparse(m: nn.Module, verbose=False, sbn=False):
oup = m
if isinstance(m, nn.Conv3d):
m: nn.Conv3d
bias = m.bias is not None
oup = SparseConv3d(
m.in_channels, m.out_channels,
kernel_size=m.kernel_size, stride=m.stride, padding=m.padding,
dilation=m.dilation, groups=m.groups, bias=bias, padding_mode=m.padding_mode,
)
oup.weight.data.copy_(m.weight.data)
if bias:
oup.bias.data.copy_(m.bias.data)
elif isinstance(m, nn.MaxPool3d):
m: nn.MaxPool3d
oup = SparseMaxPooling(m.kernel_size, stride=m.stride, padding=m.padding, dilation=m.dilation,
return_indices=m.return_indices, ceil_mode=m.ceil_mode)
elif isinstance(m, nn.AvgPool3d):
m: nn.AvgPool3d
oup = SparseAvgPooling(m.kernel_size, m.stride, m.padding, ceil_mode=m.ceil_mode,
count_include_pad=m.count_include_pad, divisor_override=m.divisor_override)
elif isinstance(m, (nn.BatchNorm3d, nn.SyncBatchNorm)):
m: nn.BatchNorm3d
oup = (SparseSyncBatchNorm3d if sbn else SparseBatchNorm3d)(m.weight.shape[0], eps=m.eps,
momentum=m.momentum, affine=m.affine,
track_running_stats=m.track_running_stats)
oup.weight.data.copy_(m.weight.data)
oup.bias.data.copy_(m.bias.data)
oup.running_mean.data.copy_(m.running_mean.data)
oup.running_var.data.copy_(m.running_var.data)
oup.num_batches_tracked.data.copy_(m.num_batches_tracked.data)
if hasattr(m, "qconfig"):
oup.qconfig = m.qconfig
elif isinstance(m, nn.InstanceNorm3d):
m: nn.InstanceNorm3d
oup = SparseInstanceNorm3d(m.num_features, eps=m.eps, momentum=m.momentum, affine=m.affine,
track_running_stats=m.track_running_stats)
if hasattr(m, "qconfig"):
oup.qconfig = m.qconfig
elif isinstance(m, nn.LayerNorm) and not isinstance(m, SparseConvNeXtLayerNorm):
m: nn.LayerNorm
oup = SparseConvNeXtLayerNorm(m.weight.shape[0], eps=m.eps)
oup.weight.data.copy_(m.weight.data)
oup.bias.data.copy_(m.bias.data)
elif isinstance(m, (nn.Conv1d,)):
m: nn.Conv1d
bias = m.bias is not None
oup = nn.Conv1d(
m.in_channels, m.out_channels,
kernel_size=m.kernel_size, stride=m.stride, padding=m.padding,
dilation=m.dilation, groups=m.groups, bias=bias, padding_mode=m.padding_mode)
oup.weight.data.copy_(m.weight.data)
if bias:
oup.bias.data.copy_(m.bias.data)
for name, child in m.named_children():
oup.add_module(name, SparseEncoder.dense_model_to_sparse(child, verbose=verbose, sbn=sbn))
del m
return oup
def forward(self, x, active_b1fff):
x1, x2, x3, x4, x5 = self.embeddings(x)
_x5 = self.mae(x5, active_b1fff)
return [x1, x2, x3, x4, _x5]
if __name__ == '__main__':
x = torch.randn([1, 96, 24, 24, 24])
_cur_active = torch.randn([1, 1, 96 // 16, 96 // 16, 96 // 16])
print(x.shape)
print(_get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=True).shape)
print(x.shape) |