File size: 1,752 Bytes
3056f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
language:
- lv
license: apache-2.0
base_model: AiLab-IMCS-UL/whisper-large-v3-lv-late-cv19
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper large LV - Felikss Kleins
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper large LV - Felikss Kleins

This model is a fine-tuned version of [AiLab-IMCS-UL/whisper-large-v3-lv-late-cv19](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv19) on the Recorded Voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1620
- Wer: 10.8617

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 2500

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0032        | 36.0360 | 1000 | 0.1513          | 12.6354 |
| 0.0007        | 72.0721 | 2000 | 0.1620          | 10.8617 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1
- Datasets 3.1.0
- Tokenizers 0.20.3