File size: 2,150 Bytes
9803d45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- accuracy
- f1
model-index:
- name: bert-large-uncased-financial-phrasebank-allagree2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
config: sentences_allagree
split: train
args: sentences_allagree
metrics:
- name: Accuracy
type: accuracy
value: 0.9911504424778761
- name: F1
type: f1
value: 0.9910704012566471
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-financial-phrasebank-allagree2
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0734
- Accuracy: 0.9912
- F1: 0.9911
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.3209 | 1.0 | 227 | 0.1929 | 0.9558 | 0.9551 |
| 0.0821 | 2.0 | 454 | 0.0994 | 0.9867 | 0.9867 |
| 0.04 | 3.0 | 681 | 0.0685 | 0.9867 | 0.9866 |
| 0.0098 | 4.0 | 908 | 0.0980 | 0.9867 | 0.9867 |
| 0.0003 | 5.0 | 1135 | 0.0734 | 0.9912 | 0.9911 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|