File size: 1,955 Bytes
87e5a87
a778be2
 
 
 
 
 
 
 
87e5a87
 
a778be2
 
87e5a87
a778be2
87e5a87
a778be2
 
318c8f3
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
87e5a87
a778be2
 
 
 
 
 
 
 
 
 
 
 
87e5a87
a778be2
87e5a87
a778be2
 
318c8f3
 
 
 
 
 
 
 
 
 
87e5a87
 
a778be2
87e5a87
a778be2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: usermanualv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# usermanualv2

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1145

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.3547        | 0.92  | 3    | 3.8202          |
| 3.6459        | 1.85  | 6    | 3.1400          |
| 3.0157        | 2.77  | 9    | 2.6629          |
| 1.9263        | 4.0   | 13   | 2.2040          |
| 2.1832        | 4.92  | 16   | 1.9006          |
| 1.8458        | 5.85  | 19   | 1.6241          |
| 1.5672        | 6.77  | 22   | 1.4101          |
| 1.0098        | 8.0   | 26   | 1.1936          |
| 1.1993        | 8.92  | 29   | 1.1223          |
| 0.7821        | 9.23  | 30   | 1.1145          |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2