File size: 1,922 Bytes
635d914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93182b8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
### YOLOS (small-sized) model Finetuned For Seal Detection Task

#### YOLOS model based on `hustvl/yolos-small` and fine-tuned on Our Seal Image Dataset.

#### Model description
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. 

#### How to use
Here is how to use this model:
```
from transformers import YolosFeatureExtractor, YolosForObjectDetection
from PIL import Image
import requests

image = Image.open("xxxxxxxxxxxxx")

feature_extractor = YolosFeatureExtractor.from_pretrained('fantast/yolos-small-finetuned-for-seal')
model = YolosForObjectDetection.from_pretrained('fantast/yolos-small-finetuned-for-seal')

inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
```

# model predicts bounding boxes
```
logits = outputs.logits
bboxes = outputs.pred_boxes
```
Currently, both the feature extractor and model support PyTorch.

#### Training data
The YOLOS model based on `hustvl/yolos-small` and fine-tuned on Our Own Seal Image Dataset, a dataset consisting of 118k/5k annotated images for training/validation respectively.


BibTeX entry and citation info
```
@article{DBLP:journals/corr/abs-2106-00666,
  author    = {Yuxin Fang and
               Bencheng Liao and
               Xinggang Wang and
               Jiemin Fang and
               Jiyang Qi and
               Rui Wu and
               Jianwei Niu and
               Wenyu Liu},
  title     = {You Only Look at One Sequence: Rethinking Transformer in Vision through
               Object Detection},
  journal   = {CoRR},
  volume    = {abs/2106.00666},
  year      = {2021},
  url       = {https://arxiv.org/abs/2106.00666},
  eprinttype = {arXiv},
  eprint    = {2106.00666},
  timestamp = {Fri, 29 Apr 2022 19:49:16 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```


---
license: mit
---