Add checks for F16.gguf and imatrix.dat, as well make HF model removal optional by default.
7df3c68
verified
import os | |
import requests | |
import zipfile | |
import subprocess | |
import shutil | |
from huggingface_hub import snapshot_download | |
# Clone or update the llama.cpp repository with --depth 1 | |
def clone_or_update_llama_cpp(): | |
print("Preparing...") | |
base_dir = os.path.dirname(os.path.abspath(__file__)) | |
os.chdir(base_dir) | |
if not os.path.exists("llama.cpp"): | |
subprocess.run(["git", "clone", "--depth", "1", "https://github.com/ggerganov/llama.cpp"]) | |
else: | |
os.chdir("llama.cpp") | |
subprocess.run(["git", "pull"]) | |
os.chdir(base_dir) | |
print("The 'llama.cpp' repository is ready.") | |
# Download and extract the latest release of llama.cpp Windows binaries | |
def download_llama_release(): | |
base_dir = os.path.dirname(os.path.abspath(__file__)) | |
dl_dir = os.path.join(base_dir, "bin", "dl") | |
if not os.path.exists(dl_dir): | |
os.makedirs(dl_dir) | |
os.chdir(dl_dir) | |
latest_release_url = "https://github.com/ggerganov/llama.cpp/releases/latest" | |
response = requests.get(latest_release_url) | |
if response.status_code == 200: | |
latest_release_tag = response.url.split("/")[-1] | |
download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip" | |
response = requests.get(download_url) | |
if response.status_code == 200: | |
with open(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "wb") as f: | |
f.write(response.content) | |
with zipfile.ZipFile(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "r") as zip_ref: | |
zip_ref.extractall(os.path.join(base_dir, "bin")) | |
print("Downloading latest 'llama.cpp' prebuilt Windows binaries...") | |
print("Download and extraction completed successfully.") | |
return latest_release_tag | |
else: | |
print("Failed to download the release file.") | |
else: | |
print("Failed to fetch the latest release information.") | |
# Download and extract the Cuda .dll resources if they aren't present in the bin folder | |
def download_cudart_if_necessary(latest_release_tag): | |
base_dir = os.path.dirname(os.path.abspath(__file__)) | |
cudart_dl_dir = os.path.join(base_dir, "bin", "dl") | |
if not os.path.exists(cudart_dl_dir): | |
os.makedirs(cudart_dl_dir) | |
cudart_zip_file = os.path.join(cudart_dl_dir, "cudart-llama-bin-win-cu12.2.0-x64.zip") | |
cudart_extracted_files = ["cublas64_12.dll", "cublasLt64_12.dll", "cudart64_12.dll"] | |
# Check if all required files exist | |
if all(os.path.exists(os.path.join(base_dir, "bin", file)) for file in cudart_extracted_files): | |
print("Cuda resources already exist. Skipping download.") | |
else: | |
cudart_download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/cudart-llama-bin-win-cu12.2.0-x64.zip" | |
response = requests.get(cudart_download_url) | |
if response.status_code == 200: | |
with open(cudart_zip_file, "wb") as f: | |
f.write(response.content) | |
with zipfile.ZipFile(cudart_zip_file, "r") as zip_ref: | |
zip_ref.extractall(os.path.join(base_dir, "bin")) | |
print("Preparing 'cuda' resources...") | |
print("Download and extraction of cudart completed successfully.") | |
else: | |
print("Failed to download the cudart release file.") | |
# Ask for user input to download or fetch from cache the specified model repository if it doesn't exist | |
def download_model_repo(): | |
base_dir = os.path.dirname(os.path.abspath(__file__)) | |
models_dir = os.path.join(base_dir, "models") | |
if not os.path.exists(models_dir): | |
os.makedirs(models_dir) | |
model_id = input("Enter the model ID to download (e.g., huggingface/transformers): ") | |
model_name = model_id.split("/")[-1] | |
model_dir = os.path.join(models_dir, model_name) | |
# Check if the model repository already exists | |
if os.path.exists(model_dir): | |
print("Model repository already exists. Using existing repository.") | |
# If the model already exists, prompt the user if they want to delete the model directory | |
delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower() | |
# Convert the existing model to GGUF F16 format and generate imatrix.dat | |
convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir) | |
else: | |
revision = input("Enter the revision (branch, tag, or commit) to download (default: main): ") or "main" | |
# Ask the user if they want to remove the HF model folder after conversion | |
delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower() | |
print("Downloading model repository...") | |
snapshot_download(repo_id=model_id, local_dir=model_dir, revision=revision) | |
print("Model repository downloaded successfully.") | |
# Convert the downloaded model to GGUF F16 format and generate imatrix.dat | |
convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir) | |
# Convert the downloaded model to GGUF F16 format | |
def convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir): | |
convert_script = os.path.join(base_dir, "llama.cpp", "convert.py") | |
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF") | |
gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf") | |
if not os.path.exists(gguf_dir): | |
os.makedirs(gguf_dir) | |
# Check if F16 file already exists | |
if not os.path.exists(gguf_model_path): | |
# Execute the conversion command | |
subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16"]) | |
# Delete the original model directory under conditions | |
if delete_model_dir == 'yes' or delete_model_dir == 'y': | |
shutil.rmtree(model_dir) | |
print(f"Original model directory '{model_dir}' deleted.") | |
else: | |
print(f"Original model directory '{model_dir}' was not deleted. You can remove it manually.") | |
# Check if imatrix.dat exists within gguf_dir | |
imatrix_exe = os.path.join(base_dir, "bin", "imatrix.exe") | |
imatrix_output = os.path.join(gguf_dir, "imatrix.dat") | |
imatrix_txt = os.path.join(base_dir, "imatrix", "imatrix.txt") | |
if not os.path.exists(imatrix_output): | |
# Execute the imatrix command | |
subprocess.run([imatrix_exe, "-m", gguf_model_path, "-f", imatrix_txt, "-ngl", "13"], cwd=gguf_dir) | |
# Move the imatrix.dat file to the GGUF folder | |
shutil.move(os.path.join(gguf_dir, "imatrix.dat"), gguf_dir) | |
print("imatrix.dat generated successfully.") | |
else: | |
print("Skipping imatrix generation as imatrix.dat already exists.") | |
else: | |
print("Skipping model conversion as F16 file already exists.") | |
# Quantize the models | |
quantize_models(base_dir, model_name) | |
# Quantize models with different options | |
def quantize_models(base_dir, model_name): | |
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF") | |
f16_gguf_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf") | |
quantization_options = [ | |
"IQ3_M", "IQ3_XXS", | |
"Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", | |
"Q5_K_M", "Q5_K_S", | |
"Q6_K", | |
"Q8_0" | |
] | |
for quant_option in quantization_options: | |
quantized_gguf_name = f"{model_name}-{quant_option}-imat.gguf" | |
quantized_gguf_path = os.path.join(gguf_dir, quantized_gguf_name) | |
quantize_command = os.path.join(base_dir, "bin", "quantize.exe") | |
imatrix_path = os.path.join(gguf_dir, "imatrix.dat") | |
subprocess.run([quantize_command, "--imatrix", imatrix_path, | |
f16_gguf_path, quantized_gguf_path, quant_option], cwd=gguf_dir) | |
print(f"Model quantized with {quant_option} option.") | |
# Main function - Steps | |
def main(): | |
clone_or_update_llama_cpp() | |
latest_release_tag = download_llama_release() | |
download_cudart_if_necessary(latest_release_tag) | |
download_model_repo() | |
print("Finished preparing resources.") | |
if __name__ == "__main__": | |
main() | |