|
import os |
|
import requests |
|
import zipfile |
|
import subprocess |
|
import shutil |
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
def clone_or_update_llama_cpp(): |
|
print("Preparing...") |
|
base_dir = os.path.dirname(os.path.abspath(__file__)) |
|
os.chdir(base_dir) |
|
if not os.path.exists("llama.cpp"): |
|
subprocess.run(["git", "clone", "--depth", "1", "https://github.com/ggerganov/llama.cpp"]) |
|
else: |
|
os.chdir("llama.cpp") |
|
subprocess.run(["git", "pull"]) |
|
os.chdir(base_dir) |
|
print("The 'llama.cpp' repository is ready.") |
|
|
|
|
|
def download_llama_release(): |
|
base_dir = os.path.dirname(os.path.abspath(__file__)) |
|
dl_dir = os.path.join(base_dir, "bin", "dl") |
|
if not os.path.exists(dl_dir): |
|
os.makedirs(dl_dir) |
|
|
|
os.chdir(dl_dir) |
|
latest_release_url = "https://github.com/ggerganov/llama.cpp/releases/latest" |
|
response = requests.get(latest_release_url) |
|
if response.status_code == 200: |
|
latest_release_tag = response.url.split("/")[-1] |
|
download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip" |
|
response = requests.get(download_url) |
|
if response.status_code == 200: |
|
with open(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "wb") as f: |
|
f.write(response.content) |
|
with zipfile.ZipFile(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "r") as zip_ref: |
|
zip_ref.extractall(os.path.join(base_dir, "bin")) |
|
print("Downloading latest 'llama.cpp' prebuilt Windows binaries...") |
|
print("Download and extraction completed successfully.") |
|
return latest_release_tag |
|
else: |
|
print("Failed to download the release file.") |
|
else: |
|
print("Failed to fetch the latest release information.") |
|
|
|
|
|
def download_cudart_if_necessary(latest_release_tag): |
|
base_dir = os.path.dirname(os.path.abspath(__file__)) |
|
cudart_dl_dir = os.path.join(base_dir, "bin", "dl") |
|
if not os.path.exists(cudart_dl_dir): |
|
os.makedirs(cudart_dl_dir) |
|
|
|
cudart_zip_file = os.path.join(cudart_dl_dir, "cudart-llama-bin-win-cu12.2.0-x64.zip") |
|
cudart_extracted_files = ["cublas64_12.dll", "cublasLt64_12.dll", "cudart64_12.dll"] |
|
|
|
|
|
if all(os.path.exists(os.path.join(base_dir, "bin", file)) for file in cudart_extracted_files): |
|
print("Cuda resources already exist. Skipping download.") |
|
else: |
|
cudart_download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/cudart-llama-bin-win-cu12.2.0-x64.zip" |
|
response = requests.get(cudart_download_url) |
|
if response.status_code == 200: |
|
with open(cudart_zip_file, "wb") as f: |
|
f.write(response.content) |
|
with zipfile.ZipFile(cudart_zip_file, "r") as zip_ref: |
|
zip_ref.extractall(os.path.join(base_dir, "bin")) |
|
print("Preparing 'cuda' resources...") |
|
print("Download and extraction of cudart completed successfully.") |
|
else: |
|
print("Failed to download the cudart release file.") |
|
|
|
|
|
def download_model_repo(): |
|
base_dir = os.path.dirname(os.path.abspath(__file__)) |
|
models_dir = os.path.join(base_dir, "models") |
|
if not os.path.exists(models_dir): |
|
os.makedirs(models_dir) |
|
|
|
model_id = input("Enter the model ID to download (e.g., huggingface/transformers): ") |
|
model_name = model_id.split("/")[-1] |
|
model_dir = os.path.join(models_dir, model_name) |
|
|
|
|
|
if os.path.exists(model_dir): |
|
print("Model repository already exists. Using existing repository.") |
|
|
|
|
|
delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower() |
|
|
|
|
|
imatrix_file_name = input("Enter the name of the imatrix.txt file (default: imatrix.txt): ").strip() or "imatrix.txt" |
|
|
|
|
|
convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name) |
|
|
|
else: |
|
revision = input("Enter the revision (branch, tag, or commit) to download (default: main): ") or "main" |
|
|
|
|
|
delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower() |
|
|
|
print("Downloading model repository...") |
|
snapshot_download(repo_id=model_id, local_dir=model_dir, revision=revision) |
|
print("Model repository downloaded successfully.") |
|
|
|
|
|
imatrix_file_name = input("Enter the name of the imatrix.txt file (default: imatrix.txt): ").strip() or "imatrix.txt" |
|
|
|
|
|
convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name) |
|
|
|
|
|
def convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name): |
|
convert_script = os.path.join(base_dir, "llama.cpp", "convert.py") |
|
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF") |
|
gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf") |
|
|
|
if not os.path.exists(gguf_dir): |
|
os.makedirs(gguf_dir) |
|
|
|
|
|
if not os.path.exists(gguf_model_path): |
|
|
|
subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16"]) |
|
|
|
|
|
if delete_model_dir == 'yes' or delete_model_dir == 'y': |
|
shutil.rmtree(model_dir) |
|
print(f"Original model directory '{model_dir}' deleted.") |
|
else: |
|
print(f"Original model directory '{model_dir}' was not deleted. You can remove it manually.") |
|
|
|
|
|
imatrix_exe = os.path.join(base_dir, "bin", "imatrix.exe") |
|
imatrix_output = os.path.join(gguf_dir, "imatrix.dat") |
|
imatrix_txt = os.path.join(base_dir, "imatrix", imatrix_file_name) |
|
if not os.path.exists(imatrix_output): |
|
|
|
subprocess.run([imatrix_exe, "-m", gguf_model_path, "-f", imatrix_txt, "-ngl", "13"], cwd=gguf_dir) |
|
|
|
if os.path.exists(os.path.join(gguf_dir, "imatrix.dat")): |
|
shutil.move(os.path.join(gguf_dir, "imatrix.dat"), gguf_dir) |
|
print("imatrix.dat generated successfully.") |
|
else: |
|
print("Failed to generate imatrix.dat file.") |
|
else: |
|
print("Skipping imatrix generation as imatrix.dat already exists.") |
|
|
|
|
|
quantize_models(base_dir, model_name) |
|
|
|
|
|
def quantize_models(base_dir, model_name): |
|
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF") |
|
f16_gguf_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf") |
|
|
|
quantization_options = [ |
|
"IQ3_M", "IQ3_XXS", |
|
"Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", |
|
"Q5_K_M", "Q5_K_S", |
|
"Q6_K", |
|
"Q8_0" |
|
] |
|
|
|
for quant_option in quantization_options: |
|
quantized_gguf_name = f"{model_name}-{quant_option}-imat.gguf" |
|
quantized_gguf_path = os.path.join(gguf_dir, quantized_gguf_name) |
|
quantize_command = os.path.join(base_dir, "bin", "quantize.exe") |
|
imatrix_path = os.path.join(gguf_dir, "imatrix.dat") |
|
|
|
subprocess.run([quantize_command, "--imatrix", imatrix_path, |
|
f16_gguf_path, quantized_gguf_path, quant_option], cwd=gguf_dir) |
|
print(f"Model quantized with {quant_option} option.") |
|
|
|
|
|
def main(): |
|
clone_or_update_llama_cpp() |
|
latest_release_tag = download_llama_release() |
|
download_cudart_if_necessary(latest_release_tag) |
|
download_model_repo() |
|
print("Finished preparing resources.") |
|
|
|
if __name__ == "__main__": |
|
main() |