File size: 2,728 Bytes
794f93d
 
 
 
 
5ea4f0a
dcd627a
5ea4f0a
 
 
dcd627a
b9dda93
 
877b98a
 
31dffe8
 
5c55299
 
31dffe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877b98a
 
20596ac
 
 
 
 
 
 
b9dda93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
language:
- en
pipeline_tag: question-answering
---
# Llama-mt-lora

<!-- Provide a quick summary of what the model is/does. -->

This model is fine-tuned with LLaMA with 8 Nvidia A100-80G GPUs using 3,000,000 groups of conversations in the context of mathematics by students and facilitators on Algebra Nation (https://www.mathnation.com/). Llama-mt-lora consists of 32 layers and over 7 billion parameters, consuming up to 13.5 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively respond generation in a mathematical context.
### Here is how to use it with texts in HuggingFace
```python
import torch
import transformers
from transformers import LlamaTokenizer, AutoModelForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("Fan21/Llama-mt-lora")
mdoel = LlamaForCausalLM.from_pretrained(
        "Fan21/Llama-mt-lora",
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""

def evaluate(
    instruction,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Response:")[1].strip()
instruction = 'write your instruction here'
inputs = 'write your inputs here'
output= evaluate(instruction,
                 input=inputs,
                 temperature=0.1,#change the parameters by yourself
                 top_p=0.75,
                 top_k=40,
                 num_beams=4,
                  max_new_tokens=128,)
```