File size: 15,585 Bytes
4effb74
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd5a712bc70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd5a7126280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683474338607892872, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHY7WPr96XLqZFzM/HY7WPr96XLqZFzM/HY7WPr96XLqZFzM/HY7WPr96XLqZFzM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZHqZP/5tCr8YSCi/ocJ5vxDIPD/WJ88/jvQuPyq6Zr984re9PHeOP/T9bb9UCgQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.419053   -0.00084106  0.6995788 ]\n [ 0.419053   -0.00084106  0.6995788 ]\n [ 0.419053   -0.00084106  0.6995788 ]\n [ 0.419053   -0.00084106  0.6995788 ]]", "desired_goal": "[[ 1.1990476  -0.54074085 -0.65735006]\n [-0.97562605  0.7374277   1.6184032 ]\n [ 0.6834191  -0.90127814 -0.08978745]\n [ 1.1130137  -0.92965627  0.5157826 ]]", "observation": "[[ 0.419053   -0.00084106  0.6995788   0.00735689  0.00556032  0.01545633]\n [ 0.419053   -0.00084106  0.6995788   0.00735689  0.00556032  0.01545633]\n [ 0.419053   -0.00084106  0.6995788   0.00735689  0.00556032  0.01545633]\n [ 0.419053   -0.00084106  0.6995788   0.00735689  0.00556032  0.01545633]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoHqNPRWPxb3/HYg+waQKPi7HQb0GfU0+2t0dva6ncj2rfcA9k/gOPk6ntLww1qw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.06908154 -0.09646431  0.26585385]\n [ 0.13539411 -0.04730909  0.20067224]\n [-0.03854165  0.05924194  0.09398969]\n [ 0.13962011 -0.02205243  0.08439291]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYsCSq1iMFsCUhpRSlIwBbJRLMowBdJRHQKR9PcoH9m91fZQoaAZoCWgPQwgRxHk4gekRwJSGlFKUaBVLMmgWR0CkfP9deIEbdX2UKGgGaAloD0MIxNLAj2r4DMCUhpRSlGgVSzJoFkdApHzEm6XjVHV9lChoBmgJaA9DCIS3ByEgDxDAlIaUUpRoFUsyaBZHQKR8iCSRr8B1fZQoaAZoCWgPQwjg10gShOsVwJSGlFKUaBVLMmgWR0Ckfp4Ajps5dX2UKGgGaAloD0MIT5Za7ze6FMCUhpRSlGgVSzJoFkdApH5fr6ciGHV9lChoBmgJaA9DCLsqUIvBoxLAlIaUUpRoFUsyaBZHQKR+JL6k6911fZQoaAZoCWgPQwjqswOuKxYSwJSGlFKUaBVLMmgWR0CkfehWxQizdX2UKGgGaAloD0MIklhS7j5HDMCUhpRSlGgVSzJoFkdApH/5xgiNbXV9lChoBmgJaA9DCL76eOi7exTAlIaUUpRoFUsyaBZHQKR/u150KZ51fZQoaAZoCWgPQwg4oKUr2IYTwJSGlFKUaBVLMmgWR0Ckf4CDEm6YdX2UKGgGaAloD0MIAB+8dmkTEcCUhpRSlGgVSzJoFkdApH9EDyOJcnV9lChoBmgJaA9DCCU/4lesYQnAlIaUUpRoFUsyaBZHQKSA3Gff4yp1fZQoaAZoCWgPQwjnVDIAVHEYwJSGlFKUaBVLMmgWR0CkgJ1/lQuVdX2UKGgGaAloD0MIxjTTvU5aF8CUhpRSlGgVSzJoFkdApIBh6+nIhnV9lChoBmgJaA9DCBwG81fI/BLAlIaUUpRoFUsyaBZHQKSAJSLIgeR1fZQoaAZoCWgPQwj18jtNZpwQwJSGlFKUaBVLMmgWR0CkgbSGSIP9dX2UKGgGaAloD0MIkuo7vyjxEsCUhpRSlGgVSzJoFkdApIF1twaR6nV9lChoBmgJaA9DCOJ30y071BjAlIaUUpRoFUsyaBZHQKSBOjZ+QU51fZQoaAZoCWgPQwj6YYTwaNMXwJSGlFKUaBVLMmgWR0CkgP0elsP8dX2UKGgGaAloD0MI3rBtUWZDD8CUhpRSlGgVSzJoFkdApIKL6pHZsnV9lChoBmgJaA9DCO3xQjo8pA7AlIaUUpRoFUsyaBZHQKSCTtgKF7F1fZQoaAZoCWgPQwiGdk6zQLsSwJSGlFKUaBVLMmgWR0CkghO0TlDGdX2UKGgGaAloD0MIHsTOFDrvEcCUhpRSlGgVSzJoFkdApIHXNke6qnV9lChoBmgJaA9DCHP3OT5aHA7AlIaUUpRoFUsyaBZHQKSDY7OE/Sp1fZQoaAZoCWgPQwhC6Qsh5wUgwJSGlFKUaBVLMmgWR0CkgyTQE6kqdX2UKGgGaAloD0MIRML3/ga9FsCUhpRSlGgVSzJoFkdApILpUHY6GXV9lChoBmgJaA9DCB0Dste7HxPAlIaUUpRoFUsyaBZHQKSCrEjxCpp1fZQoaAZoCWgPQwiKOQg6WvUawJSGlFKUaBVLMmgWR0CkhC6khzNmdX2UKGgGaAloD0MImiLA6V28DcCUhpRSlGgVSzJoFkdApIPvvUjLS3V9lChoBmgJaA9DCIB9dOrKhxLAlIaUUpRoFUsyaBZHQKSDtCzkZJl1fZQoaAZoCWgPQwiwyK8fYoMOwJSGlFKUaBVLMmgWR0Ckg3cX3xnWdX2UKGgGaAloD0MIv9L58CyRE8CUhpRSlGgVSzJoFkdApIT7cXWOInV9lChoBmgJaA9DCGuZDMfzeRPAlIaUUpRoFUsyaBZHQKSEvJPIn0F1fZQoaAZoCWgPQwjg88MI4fESwJSGlFKUaBVLMmgWR0CkhIEEcKgJdX2UKGgGaAloD0MIi1QYWwiCFMCUhpRSlGgVSzJoFkdApIRD5ylvZXV9lChoBmgJaA9DCJ5F71TAHRXAlIaUUpRoFUsyaBZHQKSF0ePJaJR1fZQoaAZoCWgPQwhoQL0ZNZ8NwJSGlFKUaBVLMmgWR0CkhZL7GecydX2UKGgGaAloD0MIHomXp3MlEMCUhpRSlGgVSzJoFkdApIVXWe6I33V9lChoBmgJaA9DCGlznNuEqxDAlIaUUpRoFUsyaBZHQKSFGla8pTd1fZQoaAZoCWgPQwi3RgTj4NITwJSGlFKUaBVLMmgWR0Ckhp4ekpI+dX2UKGgGaAloD0MICqAYWTJHDcCUhpRSlGgVSzJoFkdApIZfMjeKsXV9lChoBmgJaA9DCFrxDYXPZhHAlIaUUpRoFUsyaBZHQKSGI7UXpGF1fZQoaAZoCWgPQwi5N79hokEYwJSGlFKUaBVLMmgWR0CkheafJ3gUdX2UKGgGaAloD0MIu7a3W5IjC8CUhpRSlGgVSzJoFkdApId1mBe5WnV9lChoBmgJaA9DCHR63o0FNRfAlIaUUpRoFUsyaBZHQKSHNqbBoEl1fZQoaAZoCWgPQwhssdtnlekVwJSGlFKUaBVLMmgWR0CkhvsasIVudX2UKGgGaAloD0MIbTzYYrfvEMCUhpRSlGgVSzJoFkdApIa+AoXsPnV9lChoBmgJaA9DCC5weawZuRDAlIaUUpRoFUsyaBZHQKSIRYJ3PiV1fZQoaAZoCWgPQwgUCaaaWVsSwJSGlFKUaBVLMmgWR0CkiAabONYKdX2UKGgGaAloD0MIguMybmpQFMCUhpRSlGgVSzJoFkdApIfLDwYtQXV9lChoBmgJaA9DCGOYE7TJQQjAlIaUUpRoFUsyaBZHQKSHjf6XSjR1fZQoaAZoCWgPQwjlKavpegIfwJSGlFKUaBVLMmgWR0CkiRUNayKOdX2UKGgGaAloD0MIgjtQpzz6BsCUhpRSlGgVSzJoFkdApIjWFi8WbnV9lChoBmgJaA9DCDHtm/urRw7AlIaUUpRoFUsyaBZHQKSImqmTC+F1fZQoaAZoCWgPQwgGf7+YLekRwJSGlFKUaBVLMmgWR0CkiF2UKRdQdX2UKGgGaAloD0MIRbx1/u0CE8CUhpRSlGgVSzJoFkdApInopWmxdXV9lChoBmgJaA9DCIuH9xxYbg7AlIaUUpRoFUsyaBZHQKSJqbedkJ91fZQoaAZoCWgPQwizBu+rckEQwJSGlFKUaBVLMmgWR0CkiW4Z2pyZdX2UKGgGaAloD0MImdnnMcqzCMCUhpRSlGgVSzJoFkdApIkw/7iyZHV9lChoBmgJaA9DCJc3h2u1hxDAlIaUUpRoFUsyaBZHQKSKvP2wmmd1fZQoaAZoCWgPQwjovpzZrnAKwJSGlFKUaBVLMmgWR0Ckin4UFjd6dX2UKGgGaAloD0MIgVt381SnD8CUhpRSlGgVSzJoFkdApIpCjBVMmHV9lChoBmgJaA9DCC6M9KJ2rxLAlIaUUpRoFUsyaBZHQKSKBWluWKN1fZQoaAZoCWgPQwgSMLq8OfwIwJSGlFKUaBVLMmgWR0Cki48yFfzCdX2UKGgGaAloD0MInwJgPIMWGcCUhpRSlGgVSzJoFkdApItQR9PUKHV9lChoBmgJaA9DCOs6VFOS9QrAlIaUUpRoFUsyaBZHQKSLFLQHAyp1fZQoaAZoCWgPQwh3oblOIy0VwJSGlFKUaBVLMmgWR0Ckitej/MnrdX2UKGgGaAloD0MIjNmSVRHOE8CUhpRSlGgVSzJoFkdApIxhMURFqnV9lChoBmgJaA9DCKbQeY1dUhLAlIaUUpRoFUsyaBZHQKSMIlHBk7R1fZQoaAZoCWgPQwglB+xq8vQRwJSGlFKUaBVLMmgWR0Cki+a1kUbldX2UKGgGaAloD0MImpfD7jsmEsCUhpRSlGgVSzJoFkdApIupoZhrnHV9lChoBmgJaA9DCHSzP1BuCyLAlIaUUpRoFUsyaBZHQKSNKnpB5X51fZQoaAZoCWgPQwjR6A5iZ0oQwJSGlFKUaBVLMmgWR0CkjOuBDohZdX2UKGgGaAloD0MIMq8jDtmwEsCUhpRSlGgVSzJoFkdApIyv779AHHV9lChoBmgJaA9DCFjk1w+xIQ7AlIaUUpRoFUsyaBZHQKSMctthuwZ1fZQoaAZoCWgPQwjYDdsWZbYSwJSGlFKUaBVLMmgWR0CkjgMI/qxDdX2UKGgGaAloD0MIFYxK6gS0EsCUhpRSlGgVSzJoFkdApI3EFY+0PnV9lChoBmgJaA9DCJeQD3o2GxPAlIaUUpRoFUsyaBZHQKSNiKsMiKR1fZQoaAZoCWgPQwjTMlLvqawTwJSGlFKUaBVLMmgWR0CkjUujh1kldX2UKGgGaAloD0MI7IUCtoNxEsCUhpRSlGgVSzJoFkdApI7PmJWNm3V9lChoBmgJaA9DCGe3lslw/BDAlIaUUpRoFUsyaBZHQKSOkJtzjm11fZQoaAZoCWgPQwi+FYkJamgUwJSGlFKUaBVLMmgWR0CkjlUhmoR7dX2UKGgGaAloD0MItf8B1qpdEsCUhpRSlGgVSzJoFkdApI4YDaGpM3V9lChoBmgJaA9DCOXRjbCoSBTAlIaUUpRoFUsyaBZHQKSPnq59Vm11fZQoaAZoCWgPQwis/Z3t0fsTwJSGlFKUaBVLMmgWR0Ckj1+4kNWmdX2UKGgGaAloD0MIXFSLiGIiEMCUhpRSlGgVSzJoFkdApI8kMw1zhnV9lChoBmgJaA9DCNe/6zNnnQ7AlIaUUpRoFUsyaBZHQKSO52TPjXF1fZQoaAZoCWgPQwhMp3Ub1G4SwJSGlFKUaBVLMmgWR0CkkG7BGhEjdX2UKGgGaAloD0MIYJFfP8QmDsCUhpRSlGgVSzJoFkdApJAv4TK1X3V9lChoBmgJaA9DCCefHtsyABHAlIaUUpRoFUsyaBZHQKSP9FYMfA91fZQoaAZoCWgPQwjKVMGopE4SwJSGlFKUaBVLMmgWR0Ckj7c6mwaBdX2UKGgGaAloD0MI9l0R/G/lEMCUhpRSlGgVSzJoFkdApJE9Z1V5r3V9lChoBmgJaA9DCESmfAiqRgzAlIaUUpRoFUsyaBZHQKSQ/nSOR1Z1fZQoaAZoCWgPQwjV6UDWUwsOwJSGlFKUaBVLMmgWR0CkkMLc0tROdX2UKGgGaAloD0MIfIDuy5mNDcCUhpRSlGgVSzJoFkdApJCFxwQ18HV9lChoBmgJaA9DCL72zJIAZRPAlIaUUpRoFUsyaBZHQKSSGKLsKLN1fZQoaAZoCWgPQwjp7c9FQ5YQwJSGlFKUaBVLMmgWR0CkkdokAxSHdX2UKGgGaAloD0MIhXtl3qrLEsCUhpRSlGgVSzJoFkdApJGeh24d63V9lChoBmgJaA9DCMzuycNCTRDAlIaUUpRoFUsyaBZHQKSRYXZ5AyF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}