席亚东
commited on
Commit
•
ef2abea
1
Parent(s):
7f20926
update readme
Browse files- README.md +113 -0
- checkpoint_weight_index.json +584 -0
- dict.txt +0 -0
- inference.py +205 -0
README.md
CHANGED
@@ -1,3 +1,116 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
|
4 |
+
language: zh
|
5 |
+
inference: false
|
6 |
+
tags:
|
7 |
+
- text-generation
|
8 |
+
- dialogue-generation
|
9 |
+
- pytorch
|
10 |
+
- inference acceleration
|
11 |
+
- gpt2
|
12 |
+
- gpt3
|
13 |
---
|
14 |
+
# YuYan-Dialogue
|
15 |
+
|
16 |
+
YuYan is a series of Chinese language models with different size, developed by Fuxi AI lab, Netease.Inc. They are trained on a large Chinese novel dataset of high quality.
|
17 |
+
|
18 |
+
YuYan is in the same family of decoder-only models like [GPT2 and GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective.
|
19 |
+
|
20 |
+
YuYan-Dialogue is a dialogue model by fine-tuning the YuYan-11b on a large multi-turn dialogue dataset of high quality. It has very strong conversation generation capabilities.
|
21 |
+
|
22 |
+
## Model Inference Acceleration
|
23 |
+
|
24 |
+
As the model size increases, the model inference time increases and more computational resources are required.
|
25 |
+
|
26 |
+
Therefore, we developed our own transformer model inference acceleration framework, [EET](https://github.com/NetEase-FuXi/EET.git). More details are in [Easy and Efficient Transformer: Scalable Inference Solution For Large NLP Model](https://aclanthology.org/2022.naacl-industry.8/).
|
27 |
+
|
28 |
+
We combine our language model with the EET inference framework to provide industrial-grade inference reasoning performance.
|
29 |
+
|
30 |
+
## How to use
|
31 |
+
|
32 |
+
Our model is trained based on the [fairseq](https://github.com/facebookresearch/fairseq). As a result, the inference and finetuning depend on it.
|
33 |
+
|
34 |
+
For inference, we modify some parts of the original fairseq codes. Mainly
|
35 |
+
> fairseq-0.12.2/fairseq/sequence_generator.py
|
36 |
+
|
37 |
+
We integrate the EET with sequence_generator. We replace the eos token to a token unlikely to be sampled to ensure the generated text length. The repetition penalty trick is also modified. You can change the penalty strength by adjusting the value of `self.ban_weight`.
|
38 |
+
|
39 |
+
Then, to keep the eos token in the final generated text, we change the line 75 `include_eos=False` to `include_eos=True` in
|
40 |
+
> fairseq-0.12.2/fairseq/data/dictionary.py
|
41 |
+
|
42 |
+
Finally, to pass in parameters in python scripts, we remove the line 67 ~ line 69 in
|
43 |
+
>fairseq-0.12.2/fairseq/dataclass/utils.py
|
44 |
+
|
45 |
+
Below are the install tutorial.
|
46 |
+
|
47 |
+
```
|
48 |
+
# install pytorch
|
49 |
+
pip install torch==1.8.1 # install pytorch
|
50 |
+
|
51 |
+
# install fairseq
|
52 |
+
unzip fairseq-0.12.2.zip
|
53 |
+
cd fairseq-0.12.2
|
54 |
+
pip install.
|
55 |
+
|
56 |
+
# install EET
|
57 |
+
git clone https://github.com/NetEase-FuXi/EET.git
|
58 |
+
cd EET
|
59 |
+
pip install .
|
60 |
+
|
61 |
+
# install transformers (EET requirements)
|
62 |
+
pip install transformers==4.23
|
63 |
+
|
64 |
+
# make a folder, move the dictionary file and model file into it.
|
65 |
+
mkdir transformer_lm_gpt2_xxl_dialogue
|
66 |
+
mv dict.txt transformer_lm_gpt2_xxl_dialogue/
|
67 |
+
mv checkpoint_best_part_*.pt transformer_lm_gpt2_xxl_dialogue/
|
68 |
+
|
69 |
+
```
|
70 |
+
`inference.py` is a script to provide a interface to initialize the EET object and sequence_generator. It includes some pre-process and post-process functions for text input and output. You can modify the script according to your needs.
|
71 |
+
|
72 |
+
In addition, it provide a simple object to organize the dialogue generation and dialogue history.
|
73 |
+
|
74 |
+
After the environment is ready, several lines of codes can realize the inference.
|
75 |
+
|
76 |
+
``` python
|
77 |
+
|
78 |
+
from inference import Inference
|
79 |
+
model_path = "transformer_lm_gpt2_xxl_dialogue/checkpoint_best.pt"
|
80 |
+
data_path = "transformer_lm_gpt2_xxl_dialogue"
|
81 |
+
eet_batch_size = 10 # max inference batch size, adjust according to cuda memory, 40GB memory is necessary
|
82 |
+
inference = Inference(model_path, data_path, eet_batch_size)
|
83 |
+
dialogue_model = Dialogue(inference)
|
84 |
+
dialogue_model.get_repsonse("你好啊")
|
85 |
+
```
|
86 |
+
## Citation
|
87 |
+
If you find the technical report or resource is useful, please cite the following technical report in your paper.
|
88 |
+
- https://aclanthology.org/2022.naacl-industry.8/
|
89 |
+
```
|
90 |
+
@inproceedings{li-etal-2022-easy,
|
91 |
+
title = "Easy and Efficient Transformer: Scalable Inference Solution For Large {NLP} Model",
|
92 |
+
author = "Li, Gongzheng and
|
93 |
+
Xi, Yadong and
|
94 |
+
Ding, Jingzhen and
|
95 |
+
Wang, Duan and
|
96 |
+
Luo, Ziyang and
|
97 |
+
Zhang, Rongsheng and
|
98 |
+
Liu, Bai and
|
99 |
+
Fan, Changjie and
|
100 |
+
Mao, Xiaoxi and
|
101 |
+
Zhao, Zeng",
|
102 |
+
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track",
|
103 |
+
month = jul,
|
104 |
+
year = "2022",
|
105 |
+
address = "Hybrid: Seattle, Washington + Online",
|
106 |
+
publisher = "Association for Computational Linguistics",
|
107 |
+
url = "https://aclanthology.org/2022.naacl-industry.8",
|
108 |
+
doi = "10.18653/v1/2022.naacl-industry.8",
|
109 |
+
pages = "62--68"
|
110 |
+
}
|
111 |
+
|
112 |
+
```
|
113 |
+
## Contact Us
|
114 |
+
You can also contact us by email:
|
115 |
+
|
116 |
+
xiyadong@corp.netease.com, dingjingzhen@corp.netease
|
checkpoint_weight_index.json
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"decoder.version": "checkpoint_best_part_1.pt",
|
3 |
+
"decoder.embed_tokens.weight": "checkpoint_best_part_1.pt",
|
4 |
+
"decoder.embed_positions._float_tensor": "checkpoint_best_part_1.pt",
|
5 |
+
"decoder.layers.0.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
6 |
+
"decoder.layers.0.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
7 |
+
"decoder.layers.0.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
8 |
+
"decoder.layers.0.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
9 |
+
"decoder.layers.0.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
10 |
+
"decoder.layers.0.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
11 |
+
"decoder.layers.0.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
12 |
+
"decoder.layers.0.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
13 |
+
"decoder.layers.0.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
14 |
+
"decoder.layers.0.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
15 |
+
"decoder.layers.0.fc1.weight": "checkpoint_best_part_1.pt",
|
16 |
+
"decoder.layers.0.fc1.bias": "checkpoint_best_part_1.pt",
|
17 |
+
"decoder.layers.0.fc2.weight": "checkpoint_best_part_1.pt",
|
18 |
+
"decoder.layers.0.fc2.bias": "checkpoint_best_part_1.pt",
|
19 |
+
"decoder.layers.0.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
20 |
+
"decoder.layers.0.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
21 |
+
"decoder.layers.1.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
22 |
+
"decoder.layers.1.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
23 |
+
"decoder.layers.1.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
24 |
+
"decoder.layers.1.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
25 |
+
"decoder.layers.1.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
26 |
+
"decoder.layers.1.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
27 |
+
"decoder.layers.1.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
28 |
+
"decoder.layers.1.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
29 |
+
"decoder.layers.1.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
30 |
+
"decoder.layers.1.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
31 |
+
"decoder.layers.1.fc1.weight": "checkpoint_best_part_1.pt",
|
32 |
+
"decoder.layers.1.fc1.bias": "checkpoint_best_part_1.pt",
|
33 |
+
"decoder.layers.1.fc2.weight": "checkpoint_best_part_1.pt",
|
34 |
+
"decoder.layers.1.fc2.bias": "checkpoint_best_part_1.pt",
|
35 |
+
"decoder.layers.1.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
36 |
+
"decoder.layers.1.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
37 |
+
"decoder.layer_norm.weight": "checkpoint_best_part_1.pt",
|
38 |
+
"decoder.layer_norm.bias": "checkpoint_best_part_1.pt",
|
39 |
+
"decoder.output_projection.weight": "checkpoint_best_part_1.pt",
|
40 |
+
"decoder.layers.2.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
41 |
+
"decoder.layers.3.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
42 |
+
"decoder.layers.4.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
43 |
+
"decoder.layers.5.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
44 |
+
"decoder.layers.6.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
45 |
+
"decoder.layers.7.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
46 |
+
"decoder.layers.8.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
47 |
+
"decoder.layers.9.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
48 |
+
"decoder.layers.10.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
49 |
+
"decoder.layers.11.self_attn.k_proj.weight": "checkpoint_best_part_1.pt",
|
50 |
+
"decoder.layers.2.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
51 |
+
"decoder.layers.3.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
52 |
+
"decoder.layers.4.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
53 |
+
"decoder.layers.5.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
54 |
+
"decoder.layers.6.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
55 |
+
"decoder.layers.7.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
56 |
+
"decoder.layers.8.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
57 |
+
"decoder.layers.9.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
58 |
+
"decoder.layers.10.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
59 |
+
"decoder.layers.11.self_attn.k_proj.bias": "checkpoint_best_part_1.pt",
|
60 |
+
"decoder.layers.2.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
61 |
+
"decoder.layers.3.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
62 |
+
"decoder.layers.4.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
63 |
+
"decoder.layers.5.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
64 |
+
"decoder.layers.6.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
65 |
+
"decoder.layers.7.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
66 |
+
"decoder.layers.8.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
67 |
+
"decoder.layers.9.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
68 |
+
"decoder.layers.10.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
69 |
+
"decoder.layers.11.self_attn.v_proj.weight": "checkpoint_best_part_1.pt",
|
70 |
+
"decoder.layers.2.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
71 |
+
"decoder.layers.3.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
72 |
+
"decoder.layers.4.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
73 |
+
"decoder.layers.5.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
74 |
+
"decoder.layers.6.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
75 |
+
"decoder.layers.7.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
76 |
+
"decoder.layers.8.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
77 |
+
"decoder.layers.9.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
78 |
+
"decoder.layers.10.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
79 |
+
"decoder.layers.11.self_attn.v_proj.bias": "checkpoint_best_part_1.pt",
|
80 |
+
"decoder.layers.2.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
81 |
+
"decoder.layers.3.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
82 |
+
"decoder.layers.4.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
83 |
+
"decoder.layers.5.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
84 |
+
"decoder.layers.6.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
85 |
+
"decoder.layers.7.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
86 |
+
"decoder.layers.8.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
87 |
+
"decoder.layers.9.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
88 |
+
"decoder.layers.10.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
89 |
+
"decoder.layers.11.self_attn.q_proj.weight": "checkpoint_best_part_1.pt",
|
90 |
+
"decoder.layers.2.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
91 |
+
"decoder.layers.3.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
92 |
+
"decoder.layers.4.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
93 |
+
"decoder.layers.5.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
94 |
+
"decoder.layers.6.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
95 |
+
"decoder.layers.7.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
96 |
+
"decoder.layers.8.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
97 |
+
"decoder.layers.9.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
98 |
+
"decoder.layers.10.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
99 |
+
"decoder.layers.11.self_attn.q_proj.bias": "checkpoint_best_part_1.pt",
|
100 |
+
"decoder.layers.2.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
101 |
+
"decoder.layers.3.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
102 |
+
"decoder.layers.4.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
103 |
+
"decoder.layers.5.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
104 |
+
"decoder.layers.6.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
105 |
+
"decoder.layers.7.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
106 |
+
"decoder.layers.8.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
107 |
+
"decoder.layers.9.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
108 |
+
"decoder.layers.10.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
109 |
+
"decoder.layers.11.self_attn.out_proj.weight": "checkpoint_best_part_1.pt",
|
110 |
+
"decoder.layers.2.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
111 |
+
"decoder.layers.3.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
112 |
+
"decoder.layers.4.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
113 |
+
"decoder.layers.5.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
114 |
+
"decoder.layers.6.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
115 |
+
"decoder.layers.7.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
116 |
+
"decoder.layers.8.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
117 |
+
"decoder.layers.9.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
118 |
+
"decoder.layers.10.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
119 |
+
"decoder.layers.11.self_attn.out_proj.bias": "checkpoint_best_part_1.pt",
|
120 |
+
"decoder.layers.2.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
121 |
+
"decoder.layers.3.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
122 |
+
"decoder.layers.4.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
123 |
+
"decoder.layers.5.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
124 |
+
"decoder.layers.6.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
125 |
+
"decoder.layers.7.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
126 |
+
"decoder.layers.8.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
127 |
+
"decoder.layers.9.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
128 |
+
"decoder.layers.10.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
129 |
+
"decoder.layers.11.self_attn_layer_norm.weight": "checkpoint_best_part_1.pt",
|
130 |
+
"decoder.layers.2.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
131 |
+
"decoder.layers.3.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
132 |
+
"decoder.layers.4.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
133 |
+
"decoder.layers.5.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
134 |
+
"decoder.layers.6.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
135 |
+
"decoder.layers.7.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
136 |
+
"decoder.layers.8.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
137 |
+
"decoder.layers.9.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
138 |
+
"decoder.layers.10.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
139 |
+
"decoder.layers.11.self_attn_layer_norm.bias": "checkpoint_best_part_1.pt",
|
140 |
+
"decoder.layers.2.fc1.weight": "checkpoint_best_part_1.pt",
|
141 |
+
"decoder.layers.3.fc1.weight": "checkpoint_best_part_1.pt",
|
142 |
+
"decoder.layers.4.fc1.weight": "checkpoint_best_part_1.pt",
|
143 |
+
"decoder.layers.5.fc1.weight": "checkpoint_best_part_1.pt",
|
144 |
+
"decoder.layers.6.fc1.weight": "checkpoint_best_part_1.pt",
|
145 |
+
"decoder.layers.7.fc1.weight": "checkpoint_best_part_1.pt",
|
146 |
+
"decoder.layers.8.fc1.weight": "checkpoint_best_part_1.pt",
|
147 |
+
"decoder.layers.9.fc1.weight": "checkpoint_best_part_1.pt",
|
148 |
+
"decoder.layers.10.fc1.weight": "checkpoint_best_part_1.pt",
|
149 |
+
"decoder.layers.11.fc1.weight": "checkpoint_best_part_1.pt",
|
150 |
+
"decoder.layers.2.fc1.bias": "checkpoint_best_part_1.pt",
|
151 |
+
"decoder.layers.3.fc1.bias": "checkpoint_best_part_1.pt",
|
152 |
+
"decoder.layers.4.fc1.bias": "checkpoint_best_part_1.pt",
|
153 |
+
"decoder.layers.5.fc1.bias": "checkpoint_best_part_1.pt",
|
154 |
+
"decoder.layers.6.fc1.bias": "checkpoint_best_part_1.pt",
|
155 |
+
"decoder.layers.7.fc1.bias": "checkpoint_best_part_1.pt",
|
156 |
+
"decoder.layers.8.fc1.bias": "checkpoint_best_part_1.pt",
|
157 |
+
"decoder.layers.9.fc1.bias": "checkpoint_best_part_1.pt",
|
158 |
+
"decoder.layers.10.fc1.bias": "checkpoint_best_part_1.pt",
|
159 |
+
"decoder.layers.11.fc1.bias": "checkpoint_best_part_1.pt",
|
160 |
+
"decoder.layers.2.fc2.weight": "checkpoint_best_part_1.pt",
|
161 |
+
"decoder.layers.3.fc2.weight": "checkpoint_best_part_1.pt",
|
162 |
+
"decoder.layers.4.fc2.weight": "checkpoint_best_part_1.pt",
|
163 |
+
"decoder.layers.5.fc2.weight": "checkpoint_best_part_1.pt",
|
164 |
+
"decoder.layers.6.fc2.weight": "checkpoint_best_part_1.pt",
|
165 |
+
"decoder.layers.7.fc2.weight": "checkpoint_best_part_1.pt",
|
166 |
+
"decoder.layers.8.fc2.weight": "checkpoint_best_part_1.pt",
|
167 |
+
"decoder.layers.9.fc2.weight": "checkpoint_best_part_1.pt",
|
168 |
+
"decoder.layers.10.fc2.weight": "checkpoint_best_part_1.pt",
|
169 |
+
"decoder.layers.11.fc2.weight": "checkpoint_best_part_1.pt",
|
170 |
+
"decoder.layers.2.fc2.bias": "checkpoint_best_part_1.pt",
|
171 |
+
"decoder.layers.3.fc2.bias": "checkpoint_best_part_1.pt",
|
172 |
+
"decoder.layers.4.fc2.bias": "checkpoint_best_part_1.pt",
|
173 |
+
"decoder.layers.5.fc2.bias": "checkpoint_best_part_1.pt",
|
174 |
+
"decoder.layers.6.fc2.bias": "checkpoint_best_part_1.pt",
|
175 |
+
"decoder.layers.7.fc2.bias": "checkpoint_best_part_1.pt",
|
176 |
+
"decoder.layers.8.fc2.bias": "checkpoint_best_part_1.pt",
|
177 |
+
"decoder.layers.9.fc2.bias": "checkpoint_best_part_1.pt",
|
178 |
+
"decoder.layers.10.fc2.bias": "checkpoint_best_part_1.pt",
|
179 |
+
"decoder.layers.11.fc2.bias": "checkpoint_best_part_1.pt",
|
180 |
+
"decoder.layers.2.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
181 |
+
"decoder.layers.3.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
182 |
+
"decoder.layers.4.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
183 |
+
"decoder.layers.5.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
184 |
+
"decoder.layers.6.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
185 |
+
"decoder.layers.7.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
186 |
+
"decoder.layers.8.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
187 |
+
"decoder.layers.9.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
188 |
+
"decoder.layers.10.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
189 |
+
"decoder.layers.11.final_layer_norm.weight": "checkpoint_best_part_1.pt",
|
190 |
+
"decoder.layers.2.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
191 |
+
"decoder.layers.3.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
192 |
+
"decoder.layers.4.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
193 |
+
"decoder.layers.5.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
194 |
+
"decoder.layers.6.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
195 |
+
"decoder.layers.7.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
196 |
+
"decoder.layers.8.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
197 |
+
"decoder.layers.9.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
198 |
+
"decoder.layers.10.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
199 |
+
"decoder.layers.11.final_layer_norm.bias": "checkpoint_best_part_1.pt",
|
200 |
+
"decoder.layers.12.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
201 |
+
"decoder.layers.13.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
202 |
+
"decoder.layers.14.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
203 |
+
"decoder.layers.15.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
204 |
+
"decoder.layers.16.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
205 |
+
"decoder.layers.17.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
206 |
+
"decoder.layers.18.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
207 |
+
"decoder.layers.19.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
208 |
+
"decoder.layers.20.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
209 |
+
"decoder.layers.21.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
210 |
+
"decoder.layers.22.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
211 |
+
"decoder.layers.23.self_attn.k_proj.weight": "checkpoint_best_part_2.pt",
|
212 |
+
"decoder.layers.12.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
213 |
+
"decoder.layers.13.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
214 |
+
"decoder.layers.14.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
215 |
+
"decoder.layers.15.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
216 |
+
"decoder.layers.16.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
217 |
+
"decoder.layers.17.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
218 |
+
"decoder.layers.18.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
219 |
+
"decoder.layers.19.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
220 |
+
"decoder.layers.20.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
221 |
+
"decoder.layers.21.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
222 |
+
"decoder.layers.22.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
223 |
+
"decoder.layers.23.self_attn.k_proj.bias": "checkpoint_best_part_2.pt",
|
224 |
+
"decoder.layers.12.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
225 |
+
"decoder.layers.13.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
226 |
+
"decoder.layers.14.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
227 |
+
"decoder.layers.15.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
228 |
+
"decoder.layers.16.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
229 |
+
"decoder.layers.17.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
230 |
+
"decoder.layers.18.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
231 |
+
"decoder.layers.19.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
232 |
+
"decoder.layers.20.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
233 |
+
"decoder.layers.21.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
234 |
+
"decoder.layers.22.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
235 |
+
"decoder.layers.23.self_attn.v_proj.weight": "checkpoint_best_part_2.pt",
|
236 |
+
"decoder.layers.12.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
237 |
+
"decoder.layers.13.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
238 |
+
"decoder.layers.14.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
239 |
+
"decoder.layers.15.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
240 |
+
"decoder.layers.16.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
241 |
+
"decoder.layers.17.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
242 |
+
"decoder.layers.18.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
243 |
+
"decoder.layers.19.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
244 |
+
"decoder.layers.20.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
245 |
+
"decoder.layers.21.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
246 |
+
"decoder.layers.22.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
247 |
+
"decoder.layers.23.self_attn.v_proj.bias": "checkpoint_best_part_2.pt",
|
248 |
+
"decoder.layers.12.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
249 |
+
"decoder.layers.13.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
250 |
+
"decoder.layers.14.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
251 |
+
"decoder.layers.15.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
252 |
+
"decoder.layers.16.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
253 |
+
"decoder.layers.17.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
254 |
+
"decoder.layers.18.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
255 |
+
"decoder.layers.19.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
256 |
+
"decoder.layers.20.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
257 |
+
"decoder.layers.21.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
258 |
+
"decoder.layers.22.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
259 |
+
"decoder.layers.23.self_attn.q_proj.weight": "checkpoint_best_part_2.pt",
|
260 |
+
"decoder.layers.12.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
261 |
+
"decoder.layers.13.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
262 |
+
"decoder.layers.14.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
263 |
+
"decoder.layers.15.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
264 |
+
"decoder.layers.16.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
265 |
+
"decoder.layers.17.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
266 |
+
"decoder.layers.18.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
267 |
+
"decoder.layers.19.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
268 |
+
"decoder.layers.20.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
269 |
+
"decoder.layers.21.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
270 |
+
"decoder.layers.22.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
271 |
+
"decoder.layers.23.self_attn.q_proj.bias": "checkpoint_best_part_2.pt",
|
272 |
+
"decoder.layers.12.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
273 |
+
"decoder.layers.13.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
274 |
+
"decoder.layers.14.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
275 |
+
"decoder.layers.15.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
276 |
+
"decoder.layers.16.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
277 |
+
"decoder.layers.17.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
278 |
+
"decoder.layers.18.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
279 |
+
"decoder.layers.19.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
280 |
+
"decoder.layers.20.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
281 |
+
"decoder.layers.21.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
282 |
+
"decoder.layers.22.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
283 |
+
"decoder.layers.23.self_attn.out_proj.weight": "checkpoint_best_part_2.pt",
|
284 |
+
"decoder.layers.12.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
285 |
+
"decoder.layers.13.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
286 |
+
"decoder.layers.14.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
287 |
+
"decoder.layers.15.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
288 |
+
"decoder.layers.16.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
289 |
+
"decoder.layers.17.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
290 |
+
"decoder.layers.18.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
291 |
+
"decoder.layers.19.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
292 |
+
"decoder.layers.20.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
293 |
+
"decoder.layers.21.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
294 |
+
"decoder.layers.22.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
295 |
+
"decoder.layers.23.self_attn.out_proj.bias": "checkpoint_best_part_2.pt",
|
296 |
+
"decoder.layers.12.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
297 |
+
"decoder.layers.13.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
298 |
+
"decoder.layers.14.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
299 |
+
"decoder.layers.15.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
300 |
+
"decoder.layers.16.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
301 |
+
"decoder.layers.17.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
302 |
+
"decoder.layers.18.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
303 |
+
"decoder.layers.19.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
304 |
+
"decoder.layers.20.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
305 |
+
"decoder.layers.21.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
306 |
+
"decoder.layers.22.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
307 |
+
"decoder.layers.23.self_attn_layer_norm.weight": "checkpoint_best_part_2.pt",
|
308 |
+
"decoder.layers.12.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
309 |
+
"decoder.layers.13.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
310 |
+
"decoder.layers.14.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
311 |
+
"decoder.layers.15.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
312 |
+
"decoder.layers.16.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
313 |
+
"decoder.layers.17.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
314 |
+
"decoder.layers.18.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
315 |
+
"decoder.layers.19.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
316 |
+
"decoder.layers.20.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
317 |
+
"decoder.layers.21.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
318 |
+
"decoder.layers.22.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
319 |
+
"decoder.layers.23.self_attn_layer_norm.bias": "checkpoint_best_part_2.pt",
|
320 |
+
"decoder.layers.12.fc1.weight": "checkpoint_best_part_2.pt",
|
321 |
+
"decoder.layers.13.fc1.weight": "checkpoint_best_part_2.pt",
|
322 |
+
"decoder.layers.14.fc1.weight": "checkpoint_best_part_2.pt",
|
323 |
+
"decoder.layers.15.fc1.weight": "checkpoint_best_part_2.pt",
|
324 |
+
"decoder.layers.16.fc1.weight": "checkpoint_best_part_2.pt",
|
325 |
+
"decoder.layers.17.fc1.weight": "checkpoint_best_part_2.pt",
|
326 |
+
"decoder.layers.18.fc1.weight": "checkpoint_best_part_2.pt",
|
327 |
+
"decoder.layers.19.fc1.weight": "checkpoint_best_part_2.pt",
|
328 |
+
"decoder.layers.20.fc1.weight": "checkpoint_best_part_2.pt",
|
329 |
+
"decoder.layers.21.fc1.weight": "checkpoint_best_part_2.pt",
|
330 |
+
"decoder.layers.22.fc1.weight": "checkpoint_best_part_2.pt",
|
331 |
+
"decoder.layers.23.fc1.weight": "checkpoint_best_part_2.pt",
|
332 |
+
"decoder.layers.12.fc1.bias": "checkpoint_best_part_2.pt",
|
333 |
+
"decoder.layers.13.fc1.bias": "checkpoint_best_part_2.pt",
|
334 |
+
"decoder.layers.14.fc1.bias": "checkpoint_best_part_2.pt",
|
335 |
+
"decoder.layers.15.fc1.bias": "checkpoint_best_part_2.pt",
|
336 |
+
"decoder.layers.16.fc1.bias": "checkpoint_best_part_2.pt",
|
337 |
+
"decoder.layers.17.fc1.bias": "checkpoint_best_part_2.pt",
|
338 |
+
"decoder.layers.18.fc1.bias": "checkpoint_best_part_2.pt",
|
339 |
+
"decoder.layers.19.fc1.bias": "checkpoint_best_part_2.pt",
|
340 |
+
"decoder.layers.20.fc1.bias": "checkpoint_best_part_2.pt",
|
341 |
+
"decoder.layers.21.fc1.bias": "checkpoint_best_part_2.pt",
|
342 |
+
"decoder.layers.22.fc1.bias": "checkpoint_best_part_2.pt",
|
343 |
+
"decoder.layers.23.fc1.bias": "checkpoint_best_part_2.pt",
|
344 |
+
"decoder.layers.12.fc2.weight": "checkpoint_best_part_2.pt",
|
345 |
+
"decoder.layers.13.fc2.weight": "checkpoint_best_part_2.pt",
|
346 |
+
"decoder.layers.14.fc2.weight": "checkpoint_best_part_2.pt",
|
347 |
+
"decoder.layers.15.fc2.weight": "checkpoint_best_part_2.pt",
|
348 |
+
"decoder.layers.16.fc2.weight": "checkpoint_best_part_2.pt",
|
349 |
+
"decoder.layers.17.fc2.weight": "checkpoint_best_part_2.pt",
|
350 |
+
"decoder.layers.18.fc2.weight": "checkpoint_best_part_2.pt",
|
351 |
+
"decoder.layers.19.fc2.weight": "checkpoint_best_part_2.pt",
|
352 |
+
"decoder.layers.20.fc2.weight": "checkpoint_best_part_2.pt",
|
353 |
+
"decoder.layers.21.fc2.weight": "checkpoint_best_part_2.pt",
|
354 |
+
"decoder.layers.22.fc2.weight": "checkpoint_best_part_2.pt",
|
355 |
+
"decoder.layers.23.fc2.weight": "checkpoint_best_part_2.pt",
|
356 |
+
"decoder.layers.12.fc2.bias": "checkpoint_best_part_2.pt",
|
357 |
+
"decoder.layers.13.fc2.bias": "checkpoint_best_part_2.pt",
|
358 |
+
"decoder.layers.14.fc2.bias": "checkpoint_best_part_2.pt",
|
359 |
+
"decoder.layers.15.fc2.bias": "checkpoint_best_part_2.pt",
|
360 |
+
"decoder.layers.16.fc2.bias": "checkpoint_best_part_2.pt",
|
361 |
+
"decoder.layers.17.fc2.bias": "checkpoint_best_part_2.pt",
|
362 |
+
"decoder.layers.18.fc2.bias": "checkpoint_best_part_2.pt",
|
363 |
+
"decoder.layers.19.fc2.bias": "checkpoint_best_part_2.pt",
|
364 |
+
"decoder.layers.20.fc2.bias": "checkpoint_best_part_2.pt",
|
365 |
+
"decoder.layers.21.fc2.bias": "checkpoint_best_part_2.pt",
|
366 |
+
"decoder.layers.22.fc2.bias": "checkpoint_best_part_2.pt",
|
367 |
+
"decoder.layers.23.fc2.bias": "checkpoint_best_part_2.pt",
|
368 |
+
"decoder.layers.12.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
369 |
+
"decoder.layers.13.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
370 |
+
"decoder.layers.14.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
371 |
+
"decoder.layers.15.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
372 |
+
"decoder.layers.16.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
373 |
+
"decoder.layers.17.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
374 |
+
"decoder.layers.18.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
375 |
+
"decoder.layers.19.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
376 |
+
"decoder.layers.20.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
377 |
+
"decoder.layers.21.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
378 |
+
"decoder.layers.22.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
379 |
+
"decoder.layers.23.final_layer_norm.weight": "checkpoint_best_part_2.pt",
|
380 |
+
"decoder.layers.12.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
381 |
+
"decoder.layers.13.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
382 |
+
"decoder.layers.14.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
383 |
+
"decoder.layers.15.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
384 |
+
"decoder.layers.16.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
385 |
+
"decoder.layers.17.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
386 |
+
"decoder.layers.18.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
387 |
+
"decoder.layers.19.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
388 |
+
"decoder.layers.20.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
389 |
+
"decoder.layers.21.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
390 |
+
"decoder.layers.22.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
391 |
+
"decoder.layers.23.final_layer_norm.bias": "checkpoint_best_part_2.pt",
|
392 |
+
"decoder.layers.24.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
393 |
+
"decoder.layers.25.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
394 |
+
"decoder.layers.26.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
395 |
+
"decoder.layers.27.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
396 |
+
"decoder.layers.28.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
397 |
+
"decoder.layers.29.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
398 |
+
"decoder.layers.30.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
399 |
+
"decoder.layers.31.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
400 |
+
"decoder.layers.32.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
401 |
+
"decoder.layers.33.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
402 |
+
"decoder.layers.34.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
403 |
+
"decoder.layers.35.self_attn.k_proj.weight": "checkpoint_best_part_3.pt",
|
404 |
+
"decoder.layers.24.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
405 |
+
"decoder.layers.25.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
406 |
+
"decoder.layers.26.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
407 |
+
"decoder.layers.27.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
408 |
+
"decoder.layers.28.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
409 |
+
"decoder.layers.29.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
410 |
+
"decoder.layers.30.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
411 |
+
"decoder.layers.31.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
412 |
+
"decoder.layers.32.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
413 |
+
"decoder.layers.33.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
414 |
+
"decoder.layers.34.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
415 |
+
"decoder.layers.35.self_attn.k_proj.bias": "checkpoint_best_part_3.pt",
|
416 |
+
"decoder.layers.24.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
417 |
+
"decoder.layers.25.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
418 |
+
"decoder.layers.26.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
419 |
+
"decoder.layers.27.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
420 |
+
"decoder.layers.28.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
421 |
+
"decoder.layers.29.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
422 |
+
"decoder.layers.30.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
423 |
+
"decoder.layers.31.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
424 |
+
"decoder.layers.32.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
425 |
+
"decoder.layers.33.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
426 |
+
"decoder.layers.34.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
427 |
+
"decoder.layers.35.self_attn.v_proj.weight": "checkpoint_best_part_3.pt",
|
428 |
+
"decoder.layers.24.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
429 |
+
"decoder.layers.25.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
430 |
+
"decoder.layers.26.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
431 |
+
"decoder.layers.27.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
432 |
+
"decoder.layers.28.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
433 |
+
"decoder.layers.29.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
434 |
+
"decoder.layers.30.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
435 |
+
"decoder.layers.31.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
436 |
+
"decoder.layers.32.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
437 |
+
"decoder.layers.33.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
438 |
+
"decoder.layers.34.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
439 |
+
"decoder.layers.35.self_attn.v_proj.bias": "checkpoint_best_part_3.pt",
|
440 |
+
"decoder.layers.24.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
441 |
+
"decoder.layers.25.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
442 |
+
"decoder.layers.26.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
443 |
+
"decoder.layers.27.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
444 |
+
"decoder.layers.28.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
445 |
+
"decoder.layers.29.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
446 |
+
"decoder.layers.30.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
447 |
+
"decoder.layers.31.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
448 |
+
"decoder.layers.32.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
449 |
+
"decoder.layers.33.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
450 |
+
"decoder.layers.34.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
451 |
+
"decoder.layers.35.self_attn.q_proj.weight": "checkpoint_best_part_3.pt",
|
452 |
+
"decoder.layers.24.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
453 |
+
"decoder.layers.25.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
454 |
+
"decoder.layers.26.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
455 |
+
"decoder.layers.27.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
456 |
+
"decoder.layers.28.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
457 |
+
"decoder.layers.29.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
458 |
+
"decoder.layers.30.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
459 |
+
"decoder.layers.31.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
460 |
+
"decoder.layers.32.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
461 |
+
"decoder.layers.33.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
462 |
+
"decoder.layers.34.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
463 |
+
"decoder.layers.35.self_attn.q_proj.bias": "checkpoint_best_part_3.pt",
|
464 |
+
"decoder.layers.24.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
465 |
+
"decoder.layers.25.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
466 |
+
"decoder.layers.26.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
467 |
+
"decoder.layers.27.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
468 |
+
"decoder.layers.28.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
469 |
+
"decoder.layers.29.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
470 |
+
"decoder.layers.30.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
471 |
+
"decoder.layers.31.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
472 |
+
"decoder.layers.32.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
473 |
+
"decoder.layers.33.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
474 |
+
"decoder.layers.34.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
475 |
+
"decoder.layers.35.self_attn.out_proj.weight": "checkpoint_best_part_3.pt",
|
476 |
+
"decoder.layers.24.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
477 |
+
"decoder.layers.25.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
478 |
+
"decoder.layers.26.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
479 |
+
"decoder.layers.27.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
480 |
+
"decoder.layers.28.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
481 |
+
"decoder.layers.29.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
482 |
+
"decoder.layers.30.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
483 |
+
"decoder.layers.31.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
484 |
+
"decoder.layers.32.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
485 |
+
"decoder.layers.33.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
486 |
+
"decoder.layers.34.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
487 |
+
"decoder.layers.35.self_attn.out_proj.bias": "checkpoint_best_part_3.pt",
|
488 |
+
"decoder.layers.24.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
489 |
+
"decoder.layers.25.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
490 |
+
"decoder.layers.26.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
491 |
+
"decoder.layers.27.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
492 |
+
"decoder.layers.28.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
493 |
+
"decoder.layers.29.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
494 |
+
"decoder.layers.30.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
495 |
+
"decoder.layers.31.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
496 |
+
"decoder.layers.32.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
497 |
+
"decoder.layers.33.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
498 |
+
"decoder.layers.34.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
499 |
+
"decoder.layers.35.self_attn_layer_norm.weight": "checkpoint_best_part_3.pt",
|
500 |
+
"decoder.layers.24.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
501 |
+
"decoder.layers.25.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
502 |
+
"decoder.layers.26.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
503 |
+
"decoder.layers.27.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
504 |
+
"decoder.layers.28.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
505 |
+
"decoder.layers.29.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
506 |
+
"decoder.layers.30.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
507 |
+
"decoder.layers.31.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
508 |
+
"decoder.layers.32.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
509 |
+
"decoder.layers.33.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
510 |
+
"decoder.layers.34.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
511 |
+
"decoder.layers.35.self_attn_layer_norm.bias": "checkpoint_best_part_3.pt",
|
512 |
+
"decoder.layers.24.fc1.weight": "checkpoint_best_part_3.pt",
|
513 |
+
"decoder.layers.25.fc1.weight": "checkpoint_best_part_3.pt",
|
514 |
+
"decoder.layers.26.fc1.weight": "checkpoint_best_part_3.pt",
|
515 |
+
"decoder.layers.27.fc1.weight": "checkpoint_best_part_3.pt",
|
516 |
+
"decoder.layers.28.fc1.weight": "checkpoint_best_part_3.pt",
|
517 |
+
"decoder.layers.29.fc1.weight": "checkpoint_best_part_3.pt",
|
518 |
+
"decoder.layers.30.fc1.weight": "checkpoint_best_part_3.pt",
|
519 |
+
"decoder.layers.31.fc1.weight": "checkpoint_best_part_3.pt",
|
520 |
+
"decoder.layers.32.fc1.weight": "checkpoint_best_part_3.pt",
|
521 |
+
"decoder.layers.33.fc1.weight": "checkpoint_best_part_3.pt",
|
522 |
+
"decoder.layers.34.fc1.weight": "checkpoint_best_part_3.pt",
|
523 |
+
"decoder.layers.35.fc1.weight": "checkpoint_best_part_3.pt",
|
524 |
+
"decoder.layers.24.fc1.bias": "checkpoint_best_part_3.pt",
|
525 |
+
"decoder.layers.25.fc1.bias": "checkpoint_best_part_3.pt",
|
526 |
+
"decoder.layers.26.fc1.bias": "checkpoint_best_part_3.pt",
|
527 |
+
"decoder.layers.27.fc1.bias": "checkpoint_best_part_3.pt",
|
528 |
+
"decoder.layers.28.fc1.bias": "checkpoint_best_part_3.pt",
|
529 |
+
"decoder.layers.29.fc1.bias": "checkpoint_best_part_3.pt",
|
530 |
+
"decoder.layers.30.fc1.bias": "checkpoint_best_part_3.pt",
|
531 |
+
"decoder.layers.31.fc1.bias": "checkpoint_best_part_3.pt",
|
532 |
+
"decoder.layers.32.fc1.bias": "checkpoint_best_part_3.pt",
|
533 |
+
"decoder.layers.33.fc1.bias": "checkpoint_best_part_3.pt",
|
534 |
+
"decoder.layers.34.fc1.bias": "checkpoint_best_part_3.pt",
|
535 |
+
"decoder.layers.35.fc1.bias": "checkpoint_best_part_3.pt",
|
536 |
+
"decoder.layers.24.fc2.weight": "checkpoint_best_part_3.pt",
|
537 |
+
"decoder.layers.25.fc2.weight": "checkpoint_best_part_3.pt",
|
538 |
+
"decoder.layers.26.fc2.weight": "checkpoint_best_part_3.pt",
|
539 |
+
"decoder.layers.27.fc2.weight": "checkpoint_best_part_3.pt",
|
540 |
+
"decoder.layers.28.fc2.weight": "checkpoint_best_part_3.pt",
|
541 |
+
"decoder.layers.29.fc2.weight": "checkpoint_best_part_3.pt",
|
542 |
+
"decoder.layers.30.fc2.weight": "checkpoint_best_part_3.pt",
|
543 |
+
"decoder.layers.31.fc2.weight": "checkpoint_best_part_3.pt",
|
544 |
+
"decoder.layers.32.fc2.weight": "checkpoint_best_part_3.pt",
|
545 |
+
"decoder.layers.33.fc2.weight": "checkpoint_best_part_3.pt",
|
546 |
+
"decoder.layers.34.fc2.weight": "checkpoint_best_part_3.pt",
|
547 |
+
"decoder.layers.35.fc2.weight": "checkpoint_best_part_3.pt",
|
548 |
+
"decoder.layers.24.fc2.bias": "checkpoint_best_part_3.pt",
|
549 |
+
"decoder.layers.25.fc2.bias": "checkpoint_best_part_3.pt",
|
550 |
+
"decoder.layers.26.fc2.bias": "checkpoint_best_part_3.pt",
|
551 |
+
"decoder.layers.27.fc2.bias": "checkpoint_best_part_3.pt",
|
552 |
+
"decoder.layers.28.fc2.bias": "checkpoint_best_part_3.pt",
|
553 |
+
"decoder.layers.29.fc2.bias": "checkpoint_best_part_3.pt",
|
554 |
+
"decoder.layers.30.fc2.bias": "checkpoint_best_part_3.pt",
|
555 |
+
"decoder.layers.31.fc2.bias": "checkpoint_best_part_3.pt",
|
556 |
+
"decoder.layers.32.fc2.bias": "checkpoint_best_part_3.pt",
|
557 |
+
"decoder.layers.33.fc2.bias": "checkpoint_best_part_3.pt",
|
558 |
+
"decoder.layers.34.fc2.bias": "checkpoint_best_part_3.pt",
|
559 |
+
"decoder.layers.35.fc2.bias": "checkpoint_best_part_3.pt",
|
560 |
+
"decoder.layers.24.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
561 |
+
"decoder.layers.25.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
562 |
+
"decoder.layers.26.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
563 |
+
"decoder.layers.27.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
564 |
+
"decoder.layers.28.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
565 |
+
"decoder.layers.29.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
566 |
+
"decoder.layers.30.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
567 |
+
"decoder.layers.31.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
568 |
+
"decoder.layers.32.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
569 |
+
"decoder.layers.33.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
570 |
+
"decoder.layers.34.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
571 |
+
"decoder.layers.35.final_layer_norm.weight": "checkpoint_best_part_3.pt",
|
572 |
+
"decoder.layers.24.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
573 |
+
"decoder.layers.25.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
574 |
+
"decoder.layers.26.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
575 |
+
"decoder.layers.27.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
576 |
+
"decoder.layers.28.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
577 |
+
"decoder.layers.29.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
578 |
+
"decoder.layers.30.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
579 |
+
"decoder.layers.31.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
580 |
+
"decoder.layers.32.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
581 |
+
"decoder.layers.33.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
582 |
+
"decoder.layers.34.final_layer_norm.bias": "checkpoint_best_part_3.pt",
|
583 |
+
"decoder.layers.35.final_layer_norm.bias": "checkpoint_best_part_3.pt"
|
584 |
+
}
|
dict.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
inference.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3 -u
|
2 |
+
|
3 |
+
from collections import namedtuple
|
4 |
+
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch.nn.utils.rnn import pad_sequence
|
8 |
+
|
9 |
+
from fairseq import checkpoint_utils, options, tasks, utils
|
10 |
+
|
11 |
+
Batch = namedtuple('Batch', 'ids src_tokens src_lengths')
|
12 |
+
|
13 |
+
def make_batches(lines, task, max_positions, encode_fn):
|
14 |
+
|
15 |
+
tokens = [task.source_dictionary.encode_line(encode_fn(line),
|
16 |
+
add_if_not_exist=False,
|
17 |
+
append_eos=False,
|
18 |
+
reverse_order=True).long()
|
19 |
+
for line in lines]
|
20 |
+
lengths = [t.numel() for t in tokens]
|
21 |
+
tokens = pad_sequence(tokens, batch_first=True,
|
22 |
+
padding_value=1).flip(dims=(1,))
|
23 |
+
|
24 |
+
return Batch(ids=torch.arange(len(tokens)),
|
25 |
+
src_tokens=tokens,
|
26 |
+
src_lengths=torch.tensor(lengths))
|
27 |
+
|
28 |
+
def encode_fn(x_str):
|
29 |
+
x_str = "</s> " + x_str
|
30 |
+
return x_str
|
31 |
+
|
32 |
+
|
33 |
+
def decode_fn(x):
|
34 |
+
x = x.replace(" ", "")
|
35 |
+
return x
|
36 |
+
|
37 |
+
def eos_token_filter(sent):
|
38 |
+
return True
|
39 |
+
|
40 |
+
|
41 |
+
def post_precess(line):
|
42 |
+
|
43 |
+
if "<" in line:
|
44 |
+
line = line.split("<")[0]
|
45 |
+
return line
|
46 |
+
|
47 |
+
|
48 |
+
class Inference(object):
|
49 |
+
|
50 |
+
def __init__(self, model_path, data_path, eet_batch_size):
|
51 |
+
|
52 |
+
parser = options.get_generation_parser(default_task="language_modeling")
|
53 |
+
args = options.parse_args_and_arch(parser)
|
54 |
+
args.data = data_path
|
55 |
+
args.path = model_path
|
56 |
+
self.args = args
|
57 |
+
|
58 |
+
# generate parameter
|
59 |
+
args.beam = 1 # don't change
|
60 |
+
args.min_len = 5
|
61 |
+
args.max_len_b = 30
|
62 |
+
args.lenpen = 1.0
|
63 |
+
args.sampling = True
|
64 |
+
# args.sampling_topp = 0.7
|
65 |
+
args.sampling_topk = 10
|
66 |
+
args.temperature = 0.8
|
67 |
+
args.no_repeat_ngram_size = 1
|
68 |
+
args.fp16 = True
|
69 |
+
|
70 |
+
# Setup task, e.g., translation
|
71 |
+
task = tasks.setup_task(args)
|
72 |
+
self.task = task
|
73 |
+
# Set dictionaries
|
74 |
+
self.src_dict = task.source_dictionary
|
75 |
+
self.tgt_dict = task.target_dictionary
|
76 |
+
|
77 |
+
use_cuda = torch.cuda.is_available() and not args.cpu
|
78 |
+
self.use_cuda = use_cuda
|
79 |
+
|
80 |
+
# Optimize ensemble for generation
|
81 |
+
state = torch.load(args.path, map_location=torch.device("cpu"))
|
82 |
+
cfg_args = eval(str(state["cfg"]))["model"]
|
83 |
+
del cfg_args["_name"]
|
84 |
+
keys_list = []
|
85 |
+
values_list = []
|
86 |
+
for key,value in cfg_args.items() :
|
87 |
+
keys_list.append(key)
|
88 |
+
values_list.append(value)
|
89 |
+
Model_args = namedtuple("Model_args", keys_list)
|
90 |
+
model_args = Model_args._make(values_list)
|
91 |
+
del state
|
92 |
+
|
93 |
+
eet_seq_len = 512 # max seqence length
|
94 |
+
eet_batch_size = eet_batch_size
|
95 |
+
data_type = torch.float16
|
96 |
+
eet_config = {"data_type":data_type,
|
97 |
+
"max_batch":eet_batch_size,
|
98 |
+
"full_seq_len":eet_seq_len}
|
99 |
+
print(model_args)
|
100 |
+
from eet.fairseq.transformer import EETTransformerDecoder
|
101 |
+
eet_model = EETTransformerDecoder.from_fairseq_pretrained(model_id_or_path = args.path,
|
102 |
+
dictionary = self.src_dict,args=model_args,
|
103 |
+
config = eet_config,
|
104 |
+
no_encoder_attn = True)
|
105 |
+
self.models = [eet_model]
|
106 |
+
# Initialize generator
|
107 |
+
self.generator = task.build_generator(self.models, args)
|
108 |
+
|
109 |
+
# Load alignment dictionary for unknown word replacement
|
110 |
+
# (None if no unknown word replacement, empty if no path to align dictionary)
|
111 |
+
self.align_dict = utils.load_align_dict(args.replace_unk)
|
112 |
+
|
113 |
+
self.max_positions = 1024
|
114 |
+
self.eos_index = self.tgt_dict.eos()
|
115 |
+
self.pad_index = self.tgt_dict.pad()
|
116 |
+
|
117 |
+
def __call__(self, inputs, append_right_eos=True):
|
118 |
+
|
119 |
+
results = []
|
120 |
+
start_id = 0
|
121 |
+
|
122 |
+
batch = make_batches(inputs, self.task, self.max_positions, encode_fn)
|
123 |
+
inputs_str = inputs
|
124 |
+
|
125 |
+
src_tokens = batch.src_tokens
|
126 |
+
src_lengths = batch.src_lengths
|
127 |
+
# a new paragraph always
|
128 |
+
if src_tokens[0][-1].item() != self.eos_index and append_right_eos:
|
129 |
+
src_tokens = torch.cat([src_tokens, src_tokens.new_ones(src_tokens.size(0), 1) * self.eos_index], dim=1)
|
130 |
+
src_lengths += 1
|
131 |
+
if self.use_cuda:
|
132 |
+
src_tokens = src_tokens.cuda()
|
133 |
+
src_lengths = src_lengths.cuda()
|
134 |
+
sample = {
|
135 |
+
'net_input': {
|
136 |
+
'src_tokens': src_tokens,
|
137 |
+
'src_lengths': src_lengths,
|
138 |
+
},
|
139 |
+
}
|
140 |
+
|
141 |
+
translations = self.task.inference_step(self.generator, self.models, sample)
|
142 |
+
|
143 |
+
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
|
144 |
+
results.append((start_id + id, src_tokens[i], hypos))
|
145 |
+
|
146 |
+
# sort output to match input order
|
147 |
+
final_results = []
|
148 |
+
for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
|
149 |
+
# Process top predictions
|
150 |
+
tmp_res = []
|
151 |
+
for hypo in hypos[:min(len(hypos), self.args.nbest)]:
|
152 |
+
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
|
153 |
+
hypo_tokens=hypo['tokens'].int().cpu()[len(src_tokens)-1:],
|
154 |
+
src_str=None,
|
155 |
+
alignment=hypo['alignment'],
|
156 |
+
align_dict=self.align_dict,
|
157 |
+
tgt_dict=self.tgt_dict)
|
158 |
+
|
159 |
+
detok_hypo_str = decode_fn(hypo_str)
|
160 |
+
if eos_token_filter(detok_hypo_str):
|
161 |
+
detok_hypo_str = post_precess(detok_hypo_str)
|
162 |
+
score = hypo['score'] / math.log(2) # convert to base 2
|
163 |
+
tmp_res.append([detok_hypo_str, score])
|
164 |
+
final_results.append(tmp_res)
|
165 |
+
return final_results
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
class Dialogue(object):
|
171 |
+
def __init__(self, inference_model=None, max_dialogue_history=6):
|
172 |
+
|
173 |
+
self.inference_model = inference_model
|
174 |
+
self.max_dialogue_history = max_dialogue_history
|
175 |
+
self.dialogue_history = []
|
176 |
+
|
177 |
+
def get_repsonse(self, input_text):
|
178 |
+
self.dialogue_history.append(input_text.strip())
|
179 |
+
model_inp = ""
|
180 |
+
for idx, x in enumerate(self.dialogue_history[-self.max_dialogue_history:]):
|
181 |
+
if idx % 2 == 0:
|
182 |
+
model_inp += " <0> " + " ".join(list(x))
|
183 |
+
else:
|
184 |
+
model_inp += " <1> " + " ".join(list(x))
|
185 |
+
if idx % 2 == 0:
|
186 |
+
model_inp += " <1>"
|
187 |
+
else:
|
188 |
+
model_inp += " <0>"
|
189 |
+
# generate 5 candidates
|
190 |
+
text = self.inference_model([model_inp]*5, append_right_eos=False)
|
191 |
+
response = [x[0][0] for x in text]
|
192 |
+
# response rank according to length
|
193 |
+
response = sorted(response, key=lambda x:len(set(x)))
|
194 |
+
# overlap-score
|
195 |
+
overlap = [[len(set(x) & set(model_inp)) * len(x), x] for x in response[-4:-1]]
|
196 |
+
overlap = sorted(overlap, key=lambda x:x[0])
|
197 |
+
final_response = overlap[-2][1]
|
198 |
+
self.dialogue_history.append(final_response)
|
199 |
+
return final_response
|
200 |
+
|
201 |
+
def clear_dialogue_history(self):
|
202 |
+
self.dialogue_history = []
|
203 |
+
|
204 |
+
|
205 |
+
|