File size: 43,273 Bytes
23bd7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain utilities."""
from datetime import datetime
import math
import sys
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from torch.utils.tensorboard import SummaryWriter
from megatron import get_args
from megatron import get_signal_handler
from megatron import get_timers
from megatron import get_tensorboard_writer
from megatron import get_current_global_batch_size
from megatron import get_num_microbatches
from megatron import is_last_rank
from megatron import update_num_microbatches
from megatron import mpu
from megatron import print_rank_0
from megatron import print_rank_last
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.model import Float16Module
from megatron.model import ModelType
from megatron.optimizer import get_megatron_optimizer
from megatron.initialize import initialize_megatron
from megatron.initialize import write_args_to_tensorboard
from megatron.initialize import set_jit_fusion_options
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import unwrap_model
from megatron.data.data_samplers import build_pretraining_data_loader
from megatron.utils import calc_params_l2_norm
from megatron.schedules import get_forward_backward_func
from megatron.utils import report_memory
from megatron.model.vision.knn_monitor import compute_feature_bank
def print_datetime(string):
"""Note that this call will sync across all ranks."""
torch.distributed.barrier()
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print_rank_0('[' + string + '] datetime: {} '.format(time_str))
def pretrain(train_valid_test_dataset_provider,
model_provider,
model_type,
forward_step_func,
process_non_loss_data_func=None,
extra_args_provider=None,
args_defaults={}):
"""Main training program.
This function will run the followings in the order provided:
1) initialize Megatron.
2) setup model, optimizer and lr schedule using the model_provider.
3) call train_val_test_data_provider to get train/val/test datasets.
4) train the modle using the forward_step_func.
Arguments:
train_valid_test_dataset_provider: a function that takes the size of
train/valid/test dataset and returns `train, valid, test` datasets.
model_provider: a function that returns a vanilla version of the
model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
model_type: an enum that specifies the type of model being trained.
forward_step_func: a function that takes a `data iterator` and `model`,
and returns a `loss` scalar with a dictionary with key:values being
the info we would like to monitor during training, for example
`lm-loss: value`. We also require that this function add
`batch generator` to the timers class.
process_non_loss_data_func: a function to post process outputs of the
network. It can be used for dumping output tensors (e.g images) to
tensorboard. It takes `collected data`(list of tensors),
`current iteration index` and `tensorboard writer` as arguments.
extra_args_provider: a function that takes a parser and adds arguments
to it. It is used for programs to add their own arguments.
args_defaults: a dictionary from argument-name to argument-value. It
to set already parse arguments.
"""
# Initalize and get arguments, timers, and Tensorboard writer.
initialize_megatron(extra_args_provider=extra_args_provider,
args_defaults=args_defaults)
# Set pytorch JIT layer fusion options and warmup JIT functions.
set_jit_fusion_options()
# Adjust the startup time so it reflects the largest value.
# This will be closer to what scheduler will see (outside of
# image ... launches.
global _TRAIN_START_TIME
start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
torch.distributed.all_reduce(start_time_tensor,
op=torch.distributed.ReduceOp.MIN)
_TRAIN_START_TIME = start_time_tensor.item()
print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
time.time() - _TRAIN_START_TIME))
print_datetime('after megatron is initialized')
args = get_args()
timers = get_timers()
# Model, optimizer, and learning rate.
timers('model-and-optimizer-setup').start()
model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
model_type)
timers('model-and-optimizer-setup').stop()
print_datetime('after model, optimizer, and learning rate '
'scheduler are built')
# Data stuff.
timers('train/valid/test-data-iterators-setup').start()
if args.virtual_pipeline_model_parallel_size is not None:
all_data_iterators = [
build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
for _ in range(len(model))
]
train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
else:
train_data_iterator, valid_data_iterator, test_data_iterator \
= build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
timers('train/valid/test-data-iterators-setup').stop()
print_datetime('after dataloaders are built')
# Print setup timing.
print_rank_0('done with setup ...')
timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
print_rank_0('training ...')
iteration = 0
if args.do_train and args.train_iters > 0:
iteration = train(forward_step_func,
model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func)
print_datetime('after training is done')
if args.do_valid:
prefix = 'the end of training for val data'
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, process_non_loss_data_func,
False)
if args.save and iteration != 0:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
if args.do_test:
# Run on test data.
prefix = 'the end of training for test data'
evaluate_and_print_results(prefix, forward_step_func,
test_data_iterator, model,
0, process_non_loss_data_func,
True)
def update_train_iters(args):
# For iteration-based training, we don't need to do anything
if args.train_iters:
return
# Constant batch size with sample-based training.
if args.rampup_batch_size is None:
args.train_iters = args.train_samples // args.global_batch_size
else:
# Sample based training with rampup batch size.
iterations = 0
consumed_samples = 0
# Rampup phase.
while consumed_samples <= int(args.rampup_batch_size[2]):
update_num_microbatches(consumed_samples, consistency_check=False)
consumed_samples += get_current_global_batch_size()
iterations += 1
# Reset
update_num_microbatches(0, consistency_check=False)
# Constant phase
# Note that we throw away any partial last batch.
iterations += (args.train_samples - consumed_samples) // \
args.global_batch_size
args.train_iters = iterations
print_rank_0('setting training iterations to {}'.format(args.train_iters))
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
"""Build the model."""
args = get_args()
args.model_type = model_type
# Build model.
if mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.virtual_pipeline_model_parallel_size is not None:
assert model_type != ModelType.encoder_and_decoder, \
"Interleaved schedule not supported for model with both encoder and decoder"
model = []
for i in range(args.virtual_pipeline_model_parallel_size):
mpu.set_virtual_pipeline_model_parallel_rank(i)
# Set pre_process and post_process only after virtual rank is set.
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
this_model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
this_model.model_type = model_type
model.append(this_model)
else:
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
add_encoder = True
add_decoder = True
if model_type == ModelType.encoder_and_decoder:
if mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.pipeline_model_parallel_split_rank is not None, \
"Split rank needs to be specified for model with both encoder and decoder"
rank = mpu.get_pipeline_model_parallel_rank()
split_rank = args.pipeline_model_parallel_split_rank
world_size = mpu.get_pipeline_model_parallel_world_size()
pre_process = rank == 0 or rank == split_rank
post_process = (rank == (split_rank - 1)) or (
rank == (world_size - 1))
add_encoder = mpu.is_pipeline_stage_before_split()
add_decoder = mpu.is_pipeline_stage_after_split()
model = model_provider_func(
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder)
else:
model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
model.model_type = model_type
if not isinstance(model, list):
model = [model]
# Set tensor model parallel attributes if not set.
# Only parameters that are already tensor model parallel have these
# attributes set for them. We should make sure the default attributes
# are set for all params so the optimizer can use them.
for model_module in model:
for param in model_module.parameters():
mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
# Print number of parameters.
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on (tensor, pipeline) '
'model parallel rank ({}, {}): {}'.format(
mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
sum([sum([p.nelement() for p in model_module.parameters()])
for model_module in model])), flush=True)
# GPU allocation.
for model_module in model:
model_module.cuda(torch.cuda.current_device())
# Fp16 conversion.
if args.fp16 or args.bf16:
model = [Float16Module(model_module, args) for model_module in model]
if wrap_with_ddp:
if args.DDP_impl == 'torch':
i = torch.cuda.current_device()
model = [torchDDP(model_module, device_ids=[i], output_device=i,
process_group=mpu.get_data_parallel_group())
for model_module in model]
elif args.DDP_impl == 'local':
model = [LocalDDP(model_module,
args.accumulate_allreduce_grads_in_fp32,
args.use_contiguous_buffers_in_local_ddp)
for model_module in model]
# broad cast params from data parallel src rank to other data parallel ranks
if args.data_parallel_random_init:
for model_module in model:
model_module.broadcast_params()
else:
raise NotImplementedError('Unknown DDP implementation specified: '
'{}. Exiting.'.format(args.DDP_impl))
return model
def get_optimizer_param_scheduler(optimizer):
"""Build the learning rate scheduler."""
args = get_args()
# Iteration-based training.
if args.train_iters:
if args.lr_decay_iters is None:
args.lr_decay_iters = args.train_iters
lr_decay_steps = args.lr_decay_iters * args.global_batch_size
wd_incr_steps = args.train_iters * args.global_batch_size
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
# Sample-based training.
elif args.train_samples:
# We need to set training iters for later use. Technically
# we need to adjust the training samples too (due to last
# batch being incomplete) but we leave it as is for now.
update_train_iters(args)
if args.lr_decay_samples is None:
args.lr_decay_samples = args.train_samples
lr_decay_steps = args.lr_decay_samples
wd_incr_steps = args.train_samples
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_samples
else:
raise Exception(
'either train-iters or train-samples should be provided.')
opt_param_scheduler = OptimizerParamScheduler(
optimizer,
max_lr=args.lr,
min_lr=args.min_lr,
lr_warmup_steps=lr_warmup_steps,
lr_decay_steps=lr_decay_steps,
lr_decay_style=args.lr_decay_style,
start_wd=args.start_weight_decay,
end_wd=args.end_weight_decay,
wd_incr_steps=wd_incr_steps,
wd_incr_style=args.weight_decay_incr_style,
use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
override_opt_param_scheduler=args.override_opt_param_scheduler)
return opt_param_scheduler
def setup_model_and_optimizer(model_provider_func,
model_type,
no_wd_decay_cond=None,
scale_lr_cond=None,
lr_mult=1.0):
"""Setup model and optimizer."""
args = get_args()
model = get_model(model_provider_func, model_type)
unwrapped_model = unwrap_model(model,
(torchDDP, LocalDDP, Float16Module))
optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
scale_lr_cond, lr_mult)
opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
if args.load is not None:
timers = get_timers()
# Extra barrier is added to make sure all ranks report the
# max time.
torch.distributed.barrier()
timers('load-checkpoint').start()
args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
torch.distributed.barrier()
timers('load-checkpoint').stop()
timers.log(['load-checkpoint'])
else:
args.iteration = 0
# We only support local DDP with multiple micro-batches.
if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.DDP_impl == 'local'
# get model without FP16 and/or TorchDDP wrappers
if args.iteration == 0 and len(unwrapped_model) == 1 \
and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
print_rank_0("Initializing ICT from pretrained BERT model")
unwrapped_model[0].init_state_dict_from_bert()
if args.fp16:
optimizer.reload_model_params()
return model, optimizer, opt_param_scheduler
def train_step(forward_step_func, data_iterator,
model, optimizer, opt_param_scheduler):
"""Single training step."""
args = get_args()
timers = get_timers()
# Set grad to zero.
if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
for partition in model:
partition.zero_grad_buffer()
optimizer.zero_grad()
# Forward pass.
forward_backward_func = get_forward_backward_func()
losses_reduced = forward_backward_func(
forward_step_func, data_iterator, model,
optimizer, timers, forward_only=False)
# Empty unused memory.
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
# Reduce gradients.
timers('backward-reduce-model-grads').start()
optimizer.reduce_model_grads(args, timers)
timers('backward-reduce-model-grads').stop()
# Vision gradients.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)
# Update parameters.
timers('optimizer').start()
update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
timers('optimizer').stop()
# Gather params.
if update_successful:
timers('backward-gather-model-params').start()
optimizer.gather_model_params(args, timers)
timers('backward-gather-model-params').stop()
# Vision momentum.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.update_momentum(args.curr_iteration)
# Update learning rate.
if update_successful:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
opt_param_scheduler.step(increment=increment)
skipped_iter = 0
else:
skipped_iter = 1
# Empty unused memory.
if args.empty_unused_memory_level >= 2:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Average loss across microbatches.
loss_reduced = {}
for key in losses_reduced[0]:
if key == "describe":
continue
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
return {}, skipped_iter, grad_norm, num_zeros_in_grad
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
loss_scale, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad, my_writer):
"""Log training information such as losses, timing, ...."""
args = get_args()
timers = get_timers()
writer = get_tensorboard_writer()
# Advanced, skipped, and Nan iterations.
advanced_iters_key = 'advanced iterations'
skipped_iters_key = 'skipped iterations'
nan_iters_key = 'nan iterations'
# Advanced iterations.
if not skipped_iter:
total_loss_dict[advanced_iters_key] = total_loss_dict.get(
advanced_iters_key, 0) + 1
else:
if advanced_iters_key not in total_loss_dict:
total_loss_dict[advanced_iters_key] = 0
# Skipped iterations.
total_loss_dict[skipped_iters_key] = total_loss_dict.get(
skipped_iters_key, 0) + skipped_iter
# Update losses and set nan iterations
got_nan = False
for key in loss_dict:
if not skipped_iter:
total_loss_dict[key] = total_loss_dict.get(
key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
else:
value = loss_dict[key].float().sum().item()
is_nan = value == float('inf') or \
value == -float('inf') or \
value != value
got_nan = got_nan or is_nan
total_loss_dict[nan_iters_key] = total_loss_dict.get(
nan_iters_key, 0) + int(got_nan)
# Logging.
timers_to_log = []
def add_to_logging(name):
if name in timers.timers:
timers_to_log.append(name)
# add_to_logging('forward-compute')
# add_to_logging('forward-recv')
# add_to_logging('forward-send')
# add_to_logging('forward-backward-send-forward-backward-recv')
# add_to_logging('backward-compute')
# add_to_logging('backward-recv')
# add_to_logging('backward-send')
# add_to_logging('backward-send-forward-recv')
# add_to_logging('backward-send-backward-recv')
# add_to_logging('backward-params-all-reduce')
# add_to_logging('backward-layernorm-all-reduce')
# add_to_logging('backward-embedding-all-reduce')
# add_to_logging('backward-reduce-model-grads')
# add_to_logging('backward-gather-model-params')
# add_to_logging('optimizer-copy-to-main-grad')
# add_to_logging('optimizer-unscale-and-check-inf')
# add_to_logging('optimizer-clip-main-grad')
# add_to_logging('optimizer-count-zeros')
# add_to_logging('optimizer-inner-step')
# add_to_logging('optimizer-copy-main-to-model-params')
# add_to_logging('optimizer')
# add_to_logging('batch-generator')
# Calculate batch size.
batch_size = args.micro_batch_size * args.data_parallel_size * \
get_num_microbatches()
total_iterations = total_loss_dict[advanced_iters_key] + \
total_loss_dict[skipped_iters_key]
# Tensorboard values.
# if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
# is_last_rank():
# if args.log_learning_rate_to_tensorboard:
# writer.add_scalar('learning-rate', learning_rate, iteration)
# writer.add_scalar('learning-rate vs samples', learning_rate,
# args.consumed_train_samples)
# if args.log_batch_size_to_tensorboard:
# writer.add_scalar('batch-size', batch_size, iteration)
# writer.add_scalar('batch-size vs samples', batch_size,
# args.consumed_train_samples)
# for key in loss_dict:
# writer.add_scalar(key , loss_dict[key], iteration)
# writer.add_scalar(key + ' vs samples', loss_dict[key],
# args.consumed_train_samples)
# if args.log_loss_scale_to_tensorboard:
# writer.add_scalar('loss-scale', loss_scale, iteration)
# writer.add_scalar('loss-scale vs samples', loss_scale,
# args.consumed_train_samples)
# if args.log_world_size_to_tensorboard:
# writer.add_scalar('world-size', args.world_size, iteration)
# writer.add_scalar('world-size vs samples', args.world_size,
# args.consumed_train_samples)
# if grad_norm is not None:
# writer.add_scalar('grad-norm', grad_norm, iteration)
# writer.add_scalar('grad-norm vs samples', grad_norm,
# args.consumed_train_samples)
# if num_zeros_in_grad is not None:
# writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
# writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
# args.consumed_train_samples)
# if params_norm is not None:
# writer.add_scalar('params-norm', params_norm, iteration)
# writer.add_scalar('params-norm vs samples', params_norm,
# args.consumed_train_samples)
# if args.log_timers_to_tensorboard:
# timers.write(timers_to_log, writer, iteration,
# normalizer=total_iterations)
# if args.log_memory_to_tensorboard:
# mem_stats = torch.cuda.memory_stats()
# writer.add_scalar(
# "mem-reserved-bytes",
# mem_stats["reserved_bytes.all.current"],
# iteration,
# )
# writer.add_scalar(
# "mem-allocated-bytes",
# mem_stats["allocated_bytes.all.current"],
# iteration,
# )
# writer.add_scalar(
# "mem-allocated-count",
# mem_stats["allocation.all.current"],
# iteration,
# )
if my_writer and iteration % args.log_interval == 0 and is_last_rank():
# record learning rate
my_writer.add_scalar('train/learning-rate', learning_rate, iteration)
# record loss and ppl
total_train_loss = 0
for key in loss_dict:
my_writer.add_scalar("train/" + key , loss_dict[key], iteration)
ppl = math.exp(min(20, loss_dict[key]))
my_writer.add_scalar("train/" + key + "_ppl" , ppl, iteration)
total_train_loss += loss_dict[key]
my_writer.add_scalar("train/total-loss", total_train_loss, iteration)
# record loss scaling
my_writer.add_scalar('train/loss-scale', loss_scale, iteration)
if iteration % args.log_interval == 0:
elapsed_time = timers('interval-time').elapsed()
elapsed_time_per_iteration = elapsed_time / total_iterations
if writer:
if args.log_timers_to_tensorboard:
writer.add_scalar('iteration-time',
elapsed_time_per_iteration, iteration)
log_string = ' iteration {:8d}/{:8d} |'.format(
iteration, args.train_iters)
log_string += ' consumed samples: {:12d} |'.format(
args.consumed_train_samples)
log_string += ' Task: {} |'.format(
args.task)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
elapsed_time_per_iteration * 1000.0)
log_string += ' learning rate: {:.3E} |'.format(learning_rate)
log_string += ' global batch size: {:5d} |'.format(batch_size)
for key in total_loss_dict:
if key not in [advanced_iters_key, skipped_iters_key,
nan_iters_key]:
avg = total_loss_dict[key].item() / \
float(max(1, total_loss_dict[advanced_iters_key]))
if avg > 0.0:
log_string += ' {}: {:.6E} |'.format(key, avg)
total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
log_string += ' loss scale: {:.1f} |'.format(loss_scale)
if grad_norm is not None:
log_string += ' grad norm: {:.3f} |'.format(grad_norm)
if num_zeros_in_grad is not None:
log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
if params_norm is not None:
log_string += ' params norm: {:.3f} |'.format(params_norm)
log_string += ' number of skipped iterations: {:3d} |'.format(
total_loss_dict[skipped_iters_key])
log_string += ' number of nan iterations: {:3d} |'.format(
total_loss_dict[nan_iters_key])
total_loss_dict[advanced_iters_key] = 0
total_loss_dict[skipped_iters_key] = 0
total_loss_dict[nan_iters_key] = 0
print_rank_last(log_string)
if report_memory_flag and learning_rate > 0.:
# Report memory after optimizer state has been initialized.
report_memory('(after {} iterations)'.format(iteration))
report_memory_flag = False
timers.log(timers_to_log, normalizer=args.log_interval)
return report_memory_flag
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
timers = get_timers()
# Extra barrier is added to make sure
# all ranks report the max time.
torch.distributed.barrier()
timers('save-checkpoint').start()
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
torch.distributed.barrier()
timers('save-checkpoint').stop()
timers.log(['save-checkpoint'])
def train(forward_step_func, model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func):
"""Train the model function."""
args = get_args()
timers = get_timers()
# Write args to tensorboard
write_args_to_tensorboard()
# Turn on training mode which enables dropout.
for model_module in model:
model_module.train()
# Tracking loss.
total_loss_dict = {}
# Iterations.
iteration = args.iteration
timers('interval-time').start()
print_datetime('before the start of training step')
if is_last_rank():
my_writer = SummaryWriter(args.save + "/tb_res")
else:
my_writer = None
report_memory_flag = True
while iteration < args.train_iters:
update_num_microbatches(args.consumed_train_samples)
args.curr_iteration = iteration
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_step(forward_step_func,
train_data_iterator,
model,
optimizer,
opt_param_scheduler)
iteration += 1
args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
# Logging.
loss_scale = optimizer.get_loss_scale().item()
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(model)
report_memory_flag = training_log(loss_dict, total_loss_dict,
optimizer.param_groups[0]['lr'],
iteration, loss_scale,
report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad, my_writer)
# Autoresume
if args.adlr_autoresume and \
(iteration % args.adlr_autoresume_interval == 0):
check_adlr_autoresume_termination(iteration, model, optimizer,
opt_param_scheduler)
# Evaluation
if args.eval_interval and iteration % args.eval_interval == 0 and \
args.do_valid:
prefix = 'iteration {}'.format(iteration)
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, process_non_loss_data_func, my_writer,
False)
# Checkpointing
saved_checkpoint = False
if args.exit_signal_handler:
signal_handler = get_signal_handler()
if any(signal_handler.signals_received()):
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after receiving SIGTERM.')
sys.exit()
if args.save and args.save_interval and \
iteration % args.save_interval == 0:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
saved_checkpoint = True
# Exiting based on duration
if args.exit_duration_in_mins:
train_time = (time.time() - _TRAIN_START_TIME) / 60.0
done_cuda = torch.cuda.IntTensor(
[train_time > args.exit_duration_in_mins])
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
done = done_cuda.item()
if done:
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after {} minutes'.format(train_time))
sys.exit()
# Exiting based on iterations
if args.exit_interval and iteration % args.exit_interval == 0:
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
torch.distributed.barrier()
print_datetime('exiting program at iteration {}'.format(iteration))
sys.exit()
return iteration
def evaluate(forward_step_func,
data_iterator,
model,
process_non_loss_data_func,
verbose=False):
"""Evaluation."""
args = get_args()
if args.vision_pretraining and args.vision_pretraining_type == "dino":
compute_feature_bank(model)
# Turn on evaluation mode which disables dropout.
for model_module in model:
model_module.eval()
total_loss_dict = {}
with torch.no_grad():
iteration = 0
while iteration < args.eval_iters:
iteration += 1
if verbose and iteration % args.log_interval == 0:
print_rank_0('Evaluating iter {}/{}'.format(iteration,
args.eval_iters))
forward_backward_func = get_forward_backward_func()
loss_dicts = forward_backward_func(
forward_step_func, data_iterator, model, optimizer=None,
timers=None, forward_only=True)
# Empty unused memory
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Reduce across processes.
for loss_dict in loss_dicts:
for key in loss_dict:
if key == "describe":
continue
total_loss_dict[key] = total_loss_dict.get(
key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
* args.micro_batch_size \
* get_num_microbatches()
collected_non_loss_data = None
if process_non_loss_data_func is not None and is_last_rank():
collected_non_loss_data = forward_backward_func(
forward_step_func, data_iterator, model, optimizer=None,
timers=None, forward_only=True, collect_non_loss_data=True)
# Move model back to the train mode.
for model_module in model:
model_module.train()
for key in total_loss_dict:
total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
if "describe" in loss_dict:
total_loss_dict["describe"] = loss_dict["describe"]
return total_loss_dict, collected_non_loss_data
def evaluate_and_print_results(prefix, forward_step_func,
data_iterator, model,
iteration, process_non_loss_data_func, my_writer,
verbose=False):
"""Helper function to evaluate and dump results on screen."""
args = get_args()
writer = get_tensorboard_writer()
total_loss_dict, collected_non_loss_data = evaluate(
forward_step_func, data_iterator, model,
process_non_loss_data_func, verbose)
string = ' validation loss at {} | '.format(prefix)
total_val_loss = 0
for key in total_loss_dict:
if key == "describe":
if isinstance(total_loss_dict["describe"], str):
string += total_loss_dict["describe"]
continue
elif isinstance(total_loss_dict["describe"], dict):
continue
else:
raise "Not Imp"
string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
# ppl = math.exp(min(20, total_loss_dict[key].item()))
# string += '{} PPL: {:.6E} | '.format(key, ppl)
if my_writer and is_last_rank():
my_writer.add_scalar('val/' + key, total_loss_dict[key].item(), iteration)
my_writer.add_scalar('val/' + key + '_ppl', ppl, iteration)
total_val_loss += total_loss_dict[key].item()
# if writer:
# writer.add_scalar('{} validation'.format(key),
# total_loss_dict[key].item(),
# iteration)
# writer.add_scalar('{} validation vs samples'.format(key),
# total_loss_dict[key].item(),
# args.consumed_train_samples)
# if args.log_validation_ppl_to_tensorboard:
# writer.add_scalar('{} validation ppl'.format(key), ppl,
# iteration)
# writer.add_scalar('{} validation ppl vs samples'.format(key),
# ppl, args.consumed_train_samples)
if process_non_loss_data_func is not None and writer and is_last_rank():
process_non_loss_data_func(collected_non_loss_data, iteration, writer)
if my_writer and is_last_rank():
my_writer.add_scalar("val/total-loss", total_val_loss, iteration)
length = len(string) + 1
print_rank_last('-' * length)
print_rank_last(string)
if "describe" in total_loss_dict and isinstance(total_loss_dict["describe"], dict):
for k, v in total_loss_dict["describe"].items():
out_str = " : ".join([k, v])
print_rank_last(out_str)
print_rank_last('-' * length)
def cyclic_iter(iter):
while True:
for x in iter:
yield x
def build_train_valid_test_data_iterators(
build_train_valid_test_datasets_provider):
"""XXX"""
args = get_args()
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
print_rank_0('> building train, validation, and test datasets ...')
# Backward compatibility, assume fixed batch size.
if args.iteration > 0 and args.consumed_train_samples == 0:
assert args.train_samples is None, \
'only backward compatiblity support for iteration-based training'
args.consumed_train_samples = args.iteration * args.global_batch_size
if args.iteration > 0 and args.consumed_valid_samples == 0:
if args.train_samples is None:
args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
args.eval_iters * args.global_batch_size
# Data loader only on rank 0 of each model parallel group.
if mpu.get_tensor_model_parallel_rank() == 0:
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
else:
train_samples = args.train_iters * args.global_batch_size
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
# Build the datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
train_val_test_num_samples)
# Build dataloders.
train_dataloader = build_pretraining_data_loader(
train_ds, args.consumed_train_samples)
valid_dataloader = build_pretraining_data_loader(
valid_ds, args.consumed_valid_samples)
test_dataloader = build_pretraining_data_loader(test_ds, 0)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and args.train_iters > 0
do_valid = valid_dataloader is not None and args.eval_iters > 0
do_test = test_dataloader is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = torch.cuda.LongTensor(
[int(do_train), int(do_valid), int(do_test)])
else:
flags = torch.cuda.LongTensor([0, 0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(flags,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
# Build iterators.
dl_type = args.dataloader_type
assert dl_type in ['single', 'cyclic']
if train_dataloader is not None:
train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(train_dataloader))
else:
train_data_iterator = None
if valid_dataloader is not None:
valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(valid_dataloader))
else:
valid_data_iterator = None
if test_dataloader is not None:
test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(test_dataloader))
else:
test_data_iterator = None
return train_data_iterator, valid_data_iterator, test_data_iterator
|