File size: 2,134 Bytes
ddb26ec 775d12f 182fe20 775d12f bacf401 182fe20 775d12f 182fe20 ea6df9c ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ea6df9c ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f ddb26ec 775d12f 182fe20 775d12f c9ffc61 775d12f ddb26ec 775d12f ddb26ec 775d12f ea6df9c ddb26ec 775d12f ddb26ec 775d12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod18
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 0.38002396755162243
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod18
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4423
- Wer: 0.3800
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2865 | 1.0 | 278 | 0.4681 | 0.4721 |
| 0.2346 | 2.0 | 556 | 0.4505 | 0.4318 |
| 0.1898 | 3.0 | 834 | 0.4389 | 0.4084 |
| 0.1606 | 4.0 | 1112 | 0.4209 | 0.3981 |
| 0.1412 | 5.0 | 1390 | 0.4448 | 0.3856 |
| 0.134 | 6.0 | 1668 | 0.4423 | 0.3800 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|