File size: 13,660 Bytes
1934e78 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783901860c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783901860ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783901860d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783901860dc0>", "_build": "<function ActorCriticPolicy._build at 0x783901860e50>", "forward": "<function ActorCriticPolicy.forward at 0x783901860ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783901860f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783901861000>", "_predict": "<function ActorCriticPolicy._predict at 0x783901861090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783901861120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7839018611b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783901861240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7839019df440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709098566730717398, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp5cjwUyIq6XtoDM+GH8q5OLbg6hQazswAAgD8AAIA/40iqviad/T7VhbU+YQrvvh4Bd75AfJ8+AAAAAAAAAADNw089H0O0uzr8yb37s+29OtMBvE1Uwb0AAIA/AACAP/oCCz739xE/tu8aPd3+8b6hiOY9EC3zuAAAAAAAAAAAM6yWPG41uT8mKAk+1cGivUi/Tz1qhgU8AAAAAAAAAABwyKC+cJDXPgAVpj5NBMS+J4DbvR+ZRz4AAAAAAAAAADOTrrzhNIy6cdU1OG8dKTPuxCq6WDtTtwAAgD8AAIA/8xakvewpzLn9FKc41xX8M+Go3TorZMS3AACAPwAAgD9znki+sfRMPlelrT5rILa+Y8tvPV5Bjz0AAAAAAAAAAGDICz5DTwC8g9Y4uA+yrDefu3u9vqnHNwAAgD8AAIA/Zoi0vGSJgj/Nmoi9+iI2vxUZkL34mNW8AAAAAAAAAACgPA0+OEHruyfUM7qJrwQ4eadcvVAvczkAAIA/AACAP5oD0LwNorc/W3ggv/8UZT5sbJE8cqIbPQAAAAAAAAAApptavpAjqT4x7xU/MRHAviTzmLvIptU+AAAAAAAAAACaT8083C5NPw7nOz1JPxO/zweJu1MIVD0AAAAAAAAAAG2FVL5ZDZ4+BkDBPn9tvL7ZXDA9OA7SPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGFH9BKL8+MAWyUS8iMAXSUR0ChDOsLWqcWdX2UKGgGR0BwmYKQaJhwaAdLyGgIR0ChDPphF3INdX2UKGgGR0BwLyYc/+sHaAdLrmgIR0ChDROdXko4dX2UKGgGR0BwCae18b71aAdLwGgIR0ChDVFhgE2YdX2UKGgGR0ByzbvJA+pwaAdLzmgIR0ChDYE1uR9xdX2UKGgGR0ByVTjENvwWaAdL62gIR0ChDiIllbu/dX2UKGgGR0BxXfUSZjQRaAdL+2gIR0ChDitNSIgvdX2UKGgGR0ByRKn4wh4daAdL9GgIR0ChDmXwb2lEdX2UKGgGR0BxY1KjBVMmaAdL02gIR0ChDmO938oAdX2UKGgGR0ByE7xEv0yyaAdL82gIR0ChDouDaoMsdX2UKGgGR0BzRPp0OmSAaAdLzmgIR0ChDo8hkiD/dX2UKGgGR0BwL6mBOHnEaAdLrWgIR0ChDqeqBErodX2UKGgGR0BzHKZa3ZwoaAdL1mgIR0ChDsEV32VWdX2UKGgGR0BwA/Dm8ujAaAdLxGgIR0ChDueZgG8mdX2UKGgGR0BzkQFhXr+paAdLwGgIR0ChD0zjm0VrdX2UKGgGR0BzKsKCxu89aAdLu2gIR0ChD2cQI2OydX2UKGgGR0BzbPBciW3SaAdLzGgIR0ChD9jtPYWddX2UKGgGR0BxzwY8+zMSaAdL6WgIR0ChD9xoIv8JdX2UKGgGR0BynCmVJL/TaAdL3mgIR0ChEEIN/e+FdX2UKGgGR0BxmXVqesgdaAdLrGgIR0ChEEFW4mTldX2UKGgGR0ByWvPQfIS2aAdLumgIR0ChEGVLi++NdX2UKGgGR0BzUpEjPfKqaAdLvWgIR0ChENi2lVLjdX2UKGgGR0By9JrO7g89aAdL0GgIR0ChEO0A93bFdX2UKGgGR0ByS7y6MBIXaAdLwGgIR0ChEP7KifxudX2UKGgGR0Bw2HmT1TR6aAdL0mgIR0ChEWODjBEbdX2UKGgGR0ByFfEjxCpnaAdL9mgIR0ChEXyYG+sYdX2UKGgGR0BxGp5OafBfaAdL8GgIR0ChEZuBDohZdX2UKGgGR0Bx5OWOZLIxaAdLqWgIR0ChEaQA2hqTdX2UKGgGR0BzvJmxt52RaAdL3WgIR0ChEdEpiI+GdX2UKGgGR0BwbFVAAyVOaAdL8GgIR0ChEscZUDMedX2UKGgGR0Bwdu34Kx9oaAdLy2gIR0ChEux6F/QTdX2UKGgGR0ByKgQcxTKlaAdL12gIR0ChEyMINVindX2UKGgGR0ByDLXsgMc7aAdLrmgIR0ChEyzkp7TldX2UKGgGR0ByBabobGWEaAdL7GgIR0ChFB5zPrv9dX2UKGgGR0Bvh3EAHVwxaAdLyGgIR0ChFHMvqTr3dX2UKGgGR0BxsY+qzZ6EaAdL32gIR0ChFM+fAbhndX2UKGgGR0BxTF2OhkAhaAdLrWgIR0ChFNA3kxREdX2UKGgGR0ByFGwfQrtmaAdL2GgIR0ChFOJnQID6dX2UKGgGR0BxqwOrhisoaAdLv2gIR0ChFQg8jiXIdX2UKGgGR0ByK2zC1qnFaAdLz2gIR0ChFUHAZbY9dX2UKGgGR0Byf75VOsT4aAdLzGgIR0ChFWs3AEdOdX2UKGgGR0BxavVYp2ECaAdLzGgIR0ChFY8gpz91dX2UKGgGR0BwxcDdP+GXaAdLvWgIR0ChFmE8A7xNdX2UKGgGR0BlqxtSAH3UaAdN6ANoCEdAoRZ4KBun/HV9lChoBkdAcqMt4iX6ZmgHS9NoCEdAoRamGbkOqnV9lChoBkdAc2f3Td+G5GgHS+toCEdAoRawp4KQaXV9lChoBkdAcg9jS5RTCWgHS+RoCEdAoRa1DneSCHV9lChoBkdAZc1YODrZ8WgHTegDaAhHQKEXE3cYZVJ1fZQoaAZHQHIhK9TP0I1oB0vcaAhHQKEXb668QI51fZQoaAZHQHG5U7W/ag5oB0vQaAhHQKEXgPp6hQF1fZQoaAZHQG/40PQOWjZoB0vCaAhHQKEXiox59mZ1fZQoaAZHQHEr+nQ6ZIBoB0vKaAhHQKEXotjkMkR1fZQoaAZHQHG0T1f3N9poB0vSaAhHQKEXx1V5rxl1fZQoaAZHQHKidv4ubqhoB0vQaAhHQKEX1kCmuT11fZQoaAZHQHEcn4bjtHBoB0u2aAhHQKEX6b1AZ891fZQoaAZHQHIERBE8aGZoB0vfaAhHQKEYJlZHNHJ1fZQoaAZHQHGH/u1F6RhoB0uyaAhHQKEYmnF5v991fZQoaAZHQHHC5RO1v2poB00+AmgIR0ChGOJAdGRWdX2UKGgGR0BwIAM6RyOraAdLyGgIR0ChGPgLiMo+dX2UKGgGR0ByZJxkupS8aAdLvmgIR0ChGRCrT6SDdX2UKGgGR0BxWvOAy2x6aAdLwmgIR0ChGQ9tMwlCdX2UKGgGR0BzclOj7ALzaAdLyGgIR0ChGSo2wV0tdX2UKGgGR0B0BAMMI/qxaAdLxmgIR0ChGhWfTTfBdX2UKGgGR0BxyHN/vv0AaAdL1mgIR0ChGjZLytmudX2UKGgGR0ByaDbpNbkfaAdL/2gIR0ChGkO5SWJKdX2UKGgGR0BvT4mJFb3XaAdL3WgIR0ChGkOfNA1OdX2UKGgGR0ByfS+wkgOjaAdL6mgIR0ChGlw8OkLydX2UKGgGR0BxBki5d4VzaAdL0GgIR0ChGmVaOgg6dX2UKGgGR0BzG1FocrAhaAdL4GgIR0ChGroX0oSddX2UKGgGR0BxNtnVXmvGaAdL1GgIR0ChGtCswL3LdX2UKGgGR0BzcYwtapxWaAdL+mgIR0ChGvVg6U7kdX2UKGgGR0BxAQOqebuuaAdLr2gIR0ChGxKIrOJMdX2UKGgGR0BzDprqMWGiaAdLxmgIR0ChG3cG9pRGdX2UKGgGR0BwiekhzNliaAdLwWgIR0ChG33IMjNZdX2UKGgGR0BzH3wI+nqFaAdL5mgIR0ChG4JhF3INdX2UKGgGR0Bx6VVzZHuraAdLx2gIR0ChG6pT2nKodX2UKGgGR0By0b+OwPiDaAdL6WgIR0ChG/X2VVxTdX2UKGgGR0Bz3CdVea8ZaAdLwGgIR0ChHKI7/4qPdX2UKGgGR0Bw2lbJOnEVaAdLy2gIR0ChHK0mdAgQdX2UKGgGR0BxKwZvUBn0aAdLv2gIR0ChHM8neBQOdX2UKGgGR0BydBg4OtnxaAdLymgIR0ChHNIYFaB7dX2UKGgGR0Bwygpqh11XaAdLy2gIR0ChHNTru6VddX2UKGgGR0BxNHKT0QK8aAdLwmgIR0ChHTWr4nF6dX2UKGgGR0Bxu5v99+gEaAdL2WgIR0ChHc42Kl54dX2UKGgGR0BwERQBPsRhaAdLt2gIR0ChHe6RyOrAdX2UKGgGR0ByjJo8IRh+aAdL8GgIR0ChHfiz9jwydX2UKGgGR0ByIMv0yxiYaAdLymgIR0ChHirGBFuvdX2UKGgGR0BxMylEZzgdaAdLy2gIR0ChHnLX18LKdX2UKGgGR0BxlCn5zo2XaAdL+mgIR0ChHnLxy4nXdX2UKGgGR0ByOulfqoqDaAdL+GgIR0ChHtlByCFsdX2UKGgGR0BzAuBUaQ3haAdL2mgIR0ChHv4sunMudX2UKGgGR0BxbwDKYAsDaAdLsWgIR0ChHyUrkKeDdX2UKGgGR0BvPBUDMeOoaAdLw2gIR0ChH1vysjmkdX2UKGgGR0Bv4t9+gDigaAdLuWgIR0ChH2aS1Vo6dX2UKGgGR0Bwwih+OOsDaAdLuWgIR0ChH2zPjXFtdX2UKGgGR0BzAUsNDtw8aAdLxWgIR0ChH/yGSIP9dX2UKGgGR0ByfLcynDR/aAdL5mgIR0ChIAZRCQcQdX2UKGgGR0BwWLsZ5zHTaAdLv2gIR0ChIHtSQ5mzdX2UKGgGR0BvcAJkXk5qaAdLxGgIR0ChIK0ahpQDdX2UKGgGR0Bw4qwr1/UfaAdLzGgIR0ChINLncL0BdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |