File size: 2,432 Bytes
c479b7e
 
 
 
4222993
c479b7e
 
 
 
 
 
4222993
c479b7e
4222993
c479b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
tags:
- antibody language model
- antibody
- protein language model
base_model: Rostlab/prot_t5_xl_uniref50
license: mit 
---

# IgT5 unpaired model

Model pretrained on protein and antibody sequences using a masked language modeling (MLM) objective. It was introduced in the paper [Large scale paired antibody language models](https://arxiv.org/abs/2403.17889). 

The model is finetuned from ProtT5 using unpaired antibody sequences from the [Observed Antibody Space](https://opig.stats.ox.ac.uk/webapps/oas/).

# Use

The encoder part of the model and tokeniser can be loaded using the `transformers` library

```python
from transformers import T5EncoderModel, T5Tokenizer

tokeniser = T5Tokenizer.from_pretrained("Exscientia/IgT5_unpaired", do_lower_case=False)
model = T5EncoderModel.from_pretrained("Exscientia/IgT5_unpaired")
```

The tokeniser is used to prepare batch inputs 
```python
# single chain sequences
sequences = [
    "EVVMTQSPASLSVSPGERATLSCRARASLGISTDLAWYQQRPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDSAVYYCQQYSNWPLTFGGGTKVEIK",
    "ALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVSNRFSGSKSGNTASLTISGLQSEDEADYYCNSLTSISTWVFGGGTKLTVL"
]

# The tokeniser expects input of the form ["E V V M...", "A L T Q..."]
sequences = [' '.join(sequence) for sequence in sequences] 

tokens = tokeniser.batch_encode_plus(
    sequences, 
    add_special_tokens=True, 
    pad_to_max_length=True, 
    return_tensors="pt",
    return_special_tokens_mask=True
) 
```

Note that the tokeniser adds a `</s>` token at the end of each sequence and pads using the `<pad>` token. For example a batch containing sequences `E V V M`, `A L` will be tokenised to `E V V M </s>` and `A L </s> <pad> <pad>`. 

Sequence embeddings are generated by feeding tokens through the model

```python
output = model(
    input_ids=tokens['input_ids'], 
    attention_mask=tokens['attention_mask']
)

residue_embeddings = output.last_hidden_state
```

To obtain a sequence representation, the residue tokens can be averaged over like so

```python
import torch

# mask special tokens before summing over embeddings
residue_embeddings[tokens["special_tokens_mask"] == 1] = 0
sequence_embeddings_sum = residue_embeddings.sum(1)

# average embedding by dividing sum by sequence lengths
sequence_lengths = torch.sum(tokens["special_tokens_mask"] == 0, dim=1)
sequence_embeddings = sequence_embeddings_sum / sequence_lengths.unsqueeze(1)
```