|
--- |
|
pipeline_tag: token-classification |
|
tags: |
|
- named-entity-recognition |
|
- sequence-tagger-model |
|
widget: |
|
- text: "George Washington ging naar Washington" |
|
inference: |
|
parameters: |
|
aggregation_strategy: "simple" |
|
grouped_entities: true |
|
language: |
|
- nl |
|
--- |
|
Contrary to my other models, this one is purely a repackaging of [flair/ner-dutch-large](https://huggingface.co/flair/ner-dutch-large) but transformed back to pure huggingface pytorch for performance purposes. |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from transformers import pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EvanD/dutch-ner-xlm-conll2003") |
|
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/dutch-ner-xlm-conll2003") |
|
|
|
nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
example = "George Washington ging naar Washington" |
|
|
|
ner_results = nlp(example) |
|
print(ner_results) |
|
|
|
# { |
|
# "start_pos": 0, |
|
# "end_pos": 17, |
|
# "text": "George Washington", |
|
# "score": 0.9999986886978149, |
|
# "label": "PER" |
|
# } |
|
# { |
|
# "start_pos": 28, |
|
# "end_pos": 38, |
|
# "text": "Washington", |
|
# "score": 0.9999939203262329, |
|
# "label": "LOC" |
|
# } |
|
``` |
|
|