File size: 1,807 Bytes
637cec8
 
 
 
870ac1a
 
637cec8
 
 
 
 
 
 
 
 
 
 
870ac1a
637cec8
3a46a82
637cec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b5f3fc
637cec8
 
 
 
 
026dd9a
637cec8
 
 
 
 
3a46a82
 
 
 
 
 
 
 
 
 
637cec8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- question-answering
- nlp
- generated_from_trainer
model-index:
- name: distilbert-qa-mash-covid
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-qa-mash-covid

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mashqa_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6691

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9281        | 1.0   | 657  | 1.4079          |
| 1.4703        | 2.0   | 1314 | 1.2640          |
| 1.3062        | 3.0   | 1971 | 1.2448          |
| 1.0172        | 4.0   | 2628 | 1.2780          |
| 0.8991        | 5.0   | 3285 | 1.3009          |
| 0.8004        | 6.0   | 3942 | 1.4255          |
| 0.6502        | 7.0   | 4599 | 1.4567          |
| 0.5806        | 8.0   | 5256 | 1.5352          |
| 0.5117        | 9.0   | 5913 | 1.6334          |
| 0.4538        | 10.0  | 6570 | 1.6691          |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2