File size: 39,785 Bytes
e4ebaab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import json
import os
import time
from datetime import timedelta
from collections import defaultdict
import dataclasses

import torch
from datasets import interleave_datasets, load_dataset
from torch.distributed.elastic.multiprocessing.errors import record
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

import fla  # noqa
from fla.modules.fused_linear_cross_entropy import FusedLinearCrossEntropyLoss
from fla.ops.common.utils import prepare_position_ids
from flame.components.checkpoint import TrainState
from flame.config_manager import JobConfig
from flame.data import build_dataloader, shuffle
from flame.models.parallelize_fla import parallelize_fla
from flame.models.pipeline_fla import pipeline_fla
from flame.tools.utils import get_nparams_and_flops
from flame.utils.checkpoint import cleanup_local_checkpoints
from flame.utils.convert_dcp_to_hf import save_pretrained
from flame.utils.hf_utils import upload_checkpoint_to_hf
from datetime import datetime
from torchtitan.components.checkpoint import CheckpointManager
from torchtitan.components.ft import FTParallelDims, init_ft_manager
from torchtitan.components.loss import build_cross_entropy_loss
from torchtitan.components.lr_scheduler import build_lr_schedulers
from torchtitan.components.metrics import build_device_memory_monitor, build_metrics_processor, ensure_pp_loss_visible
from torchtitan.components.optimizer import build_optimizers
from torchtitan.distributed import ParallelDims
from torchtitan.distributed import utils as dist_utils
from torchtitan.protocols.model_converter import build_model_converters
from torchtitan.protocols.train_spec import TrainSpec, get_train_spec, register_train_spec
from torchtitan.tools import utils
from torchtitan.tools.logging import init_logger, logger
from torchtitan.tools.profiling import maybe_enable_memory_snapshot, maybe_enable_profiling

from dotenv import load_dotenv
load_dotenv()

import wandb
wandb.login(key=os.environ["WANDB_API_KEY"])

import huggingface_hub
huggingface_hub.login(token=os.environ["HF_TOKEN"])


def build_tokenizer(job_config: JobConfig) -> AutoTokenizer:
    return AutoTokenizer.from_pretrained(job_config.model.tokenizer_path)


register_train_spec(
    TrainSpec(
        name="fla",
        cls=AutoModelForCausalLM,
        config=AutoConfig,
        parallelize_fn=parallelize_fla,
        pipelining_fn=pipeline_fla,
        build_optimizers_fn=build_optimizers,
        build_lr_schedulers_fn=build_lr_schedulers,
        build_dataloader_fn=build_dataloader,
        build_tokenizer_fn=build_tokenizer,
        build_loss_fn=build_cross_entropy_loss,
    )
)


# Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
@record
def main(job_config: JobConfig):
    logger.info(f"Starting job: {job_config.job.description}")

    if job_config.experimental.custom_model_path:
        utils.import_module_from_path(job_config.experimental.custom_model_path)

    # used for colorful printing
    color = utils.NoColor if job_config.metrics.disable_color_printing else utils.Color

    if job_config.job.print_args:
        logger.info(
            f"{color.green}{json.dumps(job_config.to_dict(), indent=2, sort_keys=True)}{color.reset}"
        )

    # take control of garbage collection to avoid stragglers
    gc_handler = utils.GarbageCollection(gc_freq=job_config.training.gc_freq)

    device_module, device_type = utils.device_module, utils.device_type
    device = torch.device(f"{device_type}:{int(os.environ['LOCAL_RANK'])}")
    # Device has to be set before creating TorchFT manager.
    device_module.set_device(device)
    ft_manager = init_ft_manager(job_config)

    run_specific_repo_id = None
    if getattr(job_config.checkpoint, "hf_upload_enabled", False):
        hf_repo_base = getattr(job_config.checkpoint, "hf_repo_base_name", None)
        if hf_repo_base:
            # Generate timestamp (adjust format if desired)
            timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
            run_specific_repo_id = f"{hf_repo_base}-{timestamp}"
            logger.info(f"Target Hugging Face repository for this run: {run_specific_repo_id}")
        else:
            logger.warning("HF Hub upload enabled, but 'checkpoint.hf_repo_base_name' is not set.")
            # Disable upload if base name is missing
            job_config.checkpoint.hf_upload_enabled = False

    # init distributed
    world_size = int(os.environ["WORLD_SIZE"])
    if not ft_manager.enabled:
        parallel_dims = ParallelDims(
            dp_shard=job_config.training.data_parallel_shard_degree,
            dp_replicate=job_config.training.data_parallel_replicate_degree,
            cp=job_config.experimental.context_parallel_degree,
            tp=job_config.training.tensor_parallel_degree,
            pp=job_config.experimental.pipeline_parallel_degree,
            world_size=world_size,
            enable_loss_parallel=not job_config.training.disable_loss_parallel,
        )
    else:
        parallel_dims = FTParallelDims(
            dp_shard=job_config.training.data_parallel_shard_degree,
            dp_replicate=job_config.training.data_parallel_replicate_degree,
            cp=job_config.experimental.context_parallel_degree,
            tp=job_config.training.tensor_parallel_degree,
            pp=job_config.experimental.pipeline_parallel_degree,
            world_size=world_size,
            enable_loss_parallel=not job_config.training.disable_loss_parallel,
            ft_manager=ft_manager,
        )
    dist_utils.init_distributed(job_config)
    # initialize device memory monitor and get peak flops for MFU calculation
    device_memory_monitor = build_device_memory_monitor()
    gpu_peak_flops = utils.get_peak_flops(device_memory_monitor.device_name)
    logger.info(f"Peak FLOPS used for computing MFU: {gpu_peak_flops:.3e}")

    # build meshes
    world_mesh = parallel_dims.build_mesh(device_type=device_type)
    if parallel_dims.dp_enabled:
        dp_mesh = world_mesh["dp"]
        dp_degree, dp_rank = dp_mesh.size(), dp_mesh.get_local_rank()
    else:
        dp_degree, dp_rank = 1, 0

    if parallel_dims.pp_enabled:
        raise NotImplementedError(
            "Pipeline parallelism is not supported in this version"
        )
        """
        ! TODO[flame]: We need to fix the pipeline parallelism for flame
        [x] Match the key of models' components with the actual naming
        [ ] Fix the post-init and tie-embedding for pipeline parallelism, HF's transformer automatically
            forces to tie if head is None, we need to handle this case
        [ ]
        """
        pp_mesh = world_mesh["pp"]

    # Set random seed, and maybe enable deterministic mode (mainly for debugging, expect perf loss)
    dist_utils.set_determinism(
        world_mesh, device, job_config.training.seed, job_config.training.deterministic
    )
    train_spec = get_train_spec(job_config.model.name)

    logger.info("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(
        job_config.model.tokenizer_path,
        trust_remote_code=True,
        model_max_length=int(1e10),
    )
    logger.info(f"{tokenizer}")
    logger.info(
        f"Loading dataset {job_config.training.dataset}"
        f":{job_config.training.dataset_name}"
        if job_config.training.dataset_name is not None
        else ""
    )

    min_num_shards = dp_degree * job_config.training.num_workers
    if len(job_config.training.dataset.split(",")) == 1:
        dataset = load_dataset(
            path=job_config.training.dataset,
            name=getattr(job_config.training, "dataset_name", None),
            data_dir=getattr(job_config.training, "data_dir", None),
            data_files=getattr(job_config.training, "data_files", None),
            split=job_config.training.dataset_split or "train",
            trust_remote_code=True,
            streaming=job_config.training.streaming,
            num_proc=(
                job_config.training.num_workers
                if not job_config.training.streaming
                else None
            ),
        )
        logger.info(f"{dataset}")

        logger.info(f"Shuffling the dataset with seed {job_config.training.seed}")
        if not job_config.training.streaming:
            # the states of map-style dataset is recoverable after shuffling
            dataset = dataset.shuffle(
                seed=job_config.training.seed
            ).to_iterable_dataset(num_shards=min_num_shards)
        else:
            if dataset.num_shards < min_num_shards:
                logger.warning(
                    f"{color.red}"
                    f"Dataset {job_config.training.dataset} has insufficient shards ({dataset.num_shards}). "
                    f"Need {min_num_shards} shards minimum for {dp_degree} data parallel workers × "
                    f"{job_config.training.num_workers} dataloader workers. "
                    f"Disabling the streaming mode and resharding dataset to {min_num_shards} shards."
                    f"{color.reset}"
                )
                dataset = (
                    load_dataset(
                        path=job_config.training.dataset,
                        name=getattr(job_config.training, "dataset_name", None),
                        data_dir=getattr(job_config.training, "data_dir", None),
                        data_files=getattr(job_config.training, "data_files", None),
                        split=job_config.training.dataset_split or "train",
                        trust_remote_code=True,
                        streaming=False,
                        num_proc=job_config.training.num_workers,
                    )
                    .shuffle(seed=job_config.training.seed)
                    .to_iterable_dataset(num_shards=min_num_shards)
                )
            else:
                dataset = shuffle(dataset, seed=job_config.training.seed)
    else:
        datasets = job_config.training.dataset.split(",")
        if job_config.training.dataset_name is not None:
            dataset_names = [
                name or None for name in job_config.training.dataset_name.split(",")
            ]
            assert len(dataset_names) == len(datasets), (
                "The number of dataset names must match the number of datasets"
            )
        else:
            dataset_names = [None] * len(datasets)
        if job_config.training.dataset_split is not None:
            dataset_splits = [
                split or "train"
                for split in job_config.training.dataset_split.split(",")
            ]
            assert len(dataset_splits) == len(datasets), (
                "The number of dataset splits must match the number of datasets"
            )
        else:
            dataset_splits = ["train"] * len(datasets)
        if job_config.training.data_dir is not None:
            data_dirs = [
                data_dir or None for data_dir in job_config.training.data_dir.split(",")
            ]
            assert len(data_dirs) == len(datasets), (
                "The number of data dirs must match the number of datasets"
            )
        else:
            data_dirs = [None] * len(datasets)
        if job_config.training.data_files is not None:
            data_files = job_config.training.data_files.split(",")
            assert len(data_files) == len(datasets), (
                "The number of data files must match the number of datasets"
            )
        else:
            data_files = [None] * len(datasets)
        if job_config.training.data_probs is not None:
            data_probs = [float(p) for p in job_config.training.data_probs.split(",")]
            assert len(data_probs) == len(datasets), (
                "The number of data probabilities must match the number of datasets"
            )
        else:
            raise ValueError(
                "Data sampling probabilities are required if using multiple datasets"
            )

        subsets = []
        for i, prob in enumerate(data_probs):
            subset = load_dataset(
                path=datasets[i],
                name=dataset_names[i],
                data_dir=data_dirs[i],
                data_files=data_files[i],
                split=dataset_splits[i],
                trust_remote_code=True,
                streaming=job_config.training.streaming,
                num_proc=(
                    job_config.training.num_workers
                    if not job_config.training.streaming
                    else None
                ),
            )
            logger.info(
                f"Subset {color.cyan}{datasets[i]}"
                + (f":{dataset_names[i]} " if dataset_names[i] else " ")
                + f"(p = {prob:.3f}){color.reset}:\n"
                + f"{subset}"
            )

            logger.info(f"Shuffling the dataset with seed {job_config.training.seed}")
            if not job_config.training.streaming:
                # the states of map-style dataset is recoverable after shuffling
                subset = subset.shuffle(
                    seed=job_config.training.seed
                ).to_iterable_dataset(num_shards=min_num_shards)
            else:
                if subset.num_shards < min_num_shards:
                    logger.warning(
                        f"{color.red}"
                        f"Dataset {datasets[i]} has insufficient shards ({subset.num_shards}). "
                        f"Need {min_num_shards} shards minimum for {dp_degree} data parallel workers × "
                        f"{job_config.training.num_workers} dataloader workers. "
                        f"Resharding dataset to {min_num_shards} shards and disabling streaming mode."
                        f"{color.reset}"
                    )
                    # again, it's ok to directly shuffle the map-style dataset
                    # we expect an error raised if the map-style dataset still has not enough data shards
                    subset = (
                        load_dataset(
                            path=datasets[i],
                            name=dataset_names[i],
                            data_dir=data_dirs[i],
                            data_files=data_files[i],
                            split=dataset_splits[i],
                            trust_remote_code=True,
                            streaming=False,
                            num_proc=job_config.training.num_workers,
                        )
                        .shuffle(seed=job_config.training.seed)
                        .to_iterable_dataset(min_num_shards)
                    )
                else:
                    # we set relatively small buffer size here as interleaving could provide some randomness
                    subset = shuffle(
                        subset,
                        seed=job_config.training.seed,
                        buffer_size=max(128, 1024 // len(datasets)),
                    )

            if "text" in subset.column_names:
                subset = subset.select_columns("text")
            elif "content" in subset.column_names:
                subset = subset.select_columns("content")
            else:
                raise ValueError(
                    f"Subset {datasets[i]} has no 'text' or 'content' column"
                )
            subsets.append(subset)

        logger.info(
            f"Interleaving {len(subsets)} datasets with probabilities {data_probs}"
        )
        dataset = interleave_datasets(
            datasets=subsets,
            probabilities=data_probs,
            stopping_strategy="all_exhausted",
            seed=job_config.training.seed,
        )
        logger.info(f"{dataset}")


    logger.info(f"Loading model config from {job_config.model.config}")
    model_config = AutoConfig.from_pretrained(job_config.model.config)

    logger.info("Building dataloader...")
    dataloader = build_dataloader(
        dataset=dataset,
        tokenizer=tokenizer,
        rank=dp_rank,
        world_size=dp_degree,
        batch_size=job_config.training.batch_size,
        # TODO: Make this more modular
        # seq_len=job_config.training.seq_len if not model_config.use_myopic_loss else job_config.training.seq_len*2,
        seq_len=job_config.training.seq_len * 2,
        context_len=job_config.training.context_len,
        varlen=job_config.training.varlen,
        num_workers=job_config.training.num_workers,
        pin_memory=job_config.training.pin_memory,
        persistent_workers=job_config.training.persistent_workers,
        snapshot_every_n_steps=job_config.checkpoint.interval,
    )

    # set the model configs from training inputs:
    # 1. norm type to decide which norm layer to use
    # 2. disable fused norm if TP is enabled
    # 3. vocab size from tokenizer
    # 4. context_len base on inputs
    if parallel_dims.tp_enabled:
        if model_config.fuse_norm:
            logger.warning(
                f"{color.red}"
                f"Fused norm is not compatible with tensor parallelism. "
                f"Disabling it for now."
                f"{color.reset}"
            )
            model_config.fuse_norm = False
    if parallel_dims.loss_parallel_enabled:
        if model_config.fuse_cross_entropy:
            logger.warning(
                f"{color.red}"
                f"Loss parallel enabled. Disabling fused cross entropy for now."
                f"{color.reset}"
            )
            model_config.fuse_cross_entropy = False
    model_config.vocab_size = max(tokenizer.vocab_size, model_config.vocab_size)

    logger.info(
        f"Building model from the config\n{color.green}{model_config}{color.reset}"
    )
    with torch.device("meta"):
        model = AutoModelForCausalLM.from_config(model_config)
        if (
            getattr(model_config, "fuse_cross_entropy", False)
            and FusedLinearCrossEntropyLoss is not None
        ):
            model.criterion = FusedLinearCrossEntropyLoss(
                num_chunks=8 // parallel_dims.tp
            )
        # defer weight initialization until after parallelisms are applied
        model.apply(lambda m: setattr(m, "_is_hf_initialized", False))
    logger.info(f"{color.blue}\n{model}{color.reset}\n")

    # Build the collection of model converters. No-op if `model.converters` empty
    model_converters = build_model_converters(job_config, parallel_dims)
    model_converters.convert(model)

    # calculate model size and flops per token
    model_param_count, num_flops_per_token = get_nparams_and_flops(
        model, model_config, job_config.training.context_len
    )

    # move sharded model to CPU/GPU and initialize weights via DTensor
    if job_config.checkpoint.create_seed_checkpoint:
        init_device = "cpu"
    elif job_config.training.enable_cpu_offload:
        init_device = "cpu"
    else:
        init_device = device_type

    # apply parallelisms and initialization
    if parallel_dims.pp_enabled:
        # apply PT-D Pipeline Parallel
        (
            pp_schedule,
            model_parts,
            has_first_stage,
            has_last_stage,
        ) = train_spec.pipelining_fn(
            model,
            pp_mesh,
            parallel_dims,
            job_config,
            device,
            model_config,
            train_spec.loss_fn,
        )
        # when PP is enabled, `model` obj is no longer used after this point, model_parts is used instead
        del model

        # For PP with looped schedules, each item in model_parts is one stage-model-chunk.
        # We need to iterate through model_parts to apply SPMD parallelisms, compilation,
        # optimizer, and checkpointing
        for m in model_parts:
            # apply SPMD-style PT-D techniques
            train_spec.parallelize_fn(m, world_mesh, parallel_dims, job_config)
            m.to_empty(device=init_device)
            with torch.no_grad():
                m.post_init()
            m.train()

        # confirm that user will be able to view loss metrics on the console
        ensure_pp_loss_visible(parallel_dims, job_config, color)
    else:
        # apply PT-D Tensor Parallel, activation checkpointing, torch.compile, Data Parallel
        train_spec.parallelize_fn(model, world_mesh, parallel_dims, job_config)
        model.to_empty(device=init_device)
        with torch.no_grad():
            model.post_init()
        model.train()

        model_parts = [model]

    device_mem_stats = device_memory_monitor.get_peak_stats()
    logger.info(
        f"{device_type.upper()} memory usage for model: "
        f"{device_mem_stats.max_reserved_gib:.2f}GiB"
        f"({device_mem_stats.max_reserved_pct:.2f}%)"
    )

    # build optimizer after applying parallelisms to the model
    optimizers = train_spec.build_optimizers_fn(model_parts, job_config, ft_manager)
    lr_schedulers = train_spec.build_lr_schedulers_fn(optimizers, job_config)
    # Post optimizer step model converters hook.
    # e.g. calculate float8 dynamic amax/scale for all-parameter for FSDP2
    # where it issues a single all-reduce for all parameters at once for better performance
    optimizers.register_step_post_hook(
        lambda *args, **kwargs: model_converters.post_optimizer_hook(model_parts)
    )

    train_state = TrainState()

    # load initial checkpoint
    checkpoint = CheckpointManager(
        dataloader=dataloader,
        model_parts=model_parts,
        optimizers=optimizers,
        lr_schedulers=lr_schedulers,
        states={"train_state": train_state},
        job_config=job_config,
        ft_manager=ft_manager,
    )

    if job_config.checkpoint.create_seed_checkpoint:
        assert world_size == 1, (
            "Must create seed checkpoint using a single device, to disable sharding"
        )
        assert job_config.checkpoint.enable_checkpoint, (
            "Must enable checkpointing when creating a seed checkpoint"
        )
        checkpoint.save(curr_step=0, force=True)
        logger.info("Created seed checkpoint")
        return

    checkpoint.load(step=job_config.checkpoint.load_step)
    metric_logger = build_metrics_processor(job_config, parallel_dims)
    # Set dependent attributes for metric_logger
    metric_logger.num_flops_per_token = num_flops_per_token
    metric_logger.optimizers = optimizers  # Pass optimizers if needed by logger logic
    metric_logger.lr_schedulers = (
        lr_schedulers  # Pass schedulers if needed by logger logic
    )

    # plot losses loaded from checkpoint (if any) to TensorBoard
    # NOTE: Loss info after the last log step before checkpoint saving will not be ploted.
    #       This can be avoided by setting checkpoint.interval to be a multiple of metrics.log_freq
    if train_state.step > 0 and len(metric_logger.data_loading_times) > 0:
        for idx, step in enumerate(train_state.log_steps):
            metric_logger.log(
                step,
                global_avg_loss=train_state.global_avg_losses[idx],
                global_max_loss=train_state.global_max_losses[idx],
            )

    data_iterator = iter(dataloader)

    train_context = dist_utils.get_train_context(
        parallel_dims.loss_parallel_enabled,
        job_config.experimental.enable_compiled_autograd,
    )

    # variables used to keep info for metrics logging
    device_memory_monitor.reset_peak_stats()

    global_batch_size = (
        job_config.training.batch_size
        * dp_degree
        * job_config.training.gradient_accumulation_steps
    )
    num_tokens_per_step = global_batch_size * job_config.training.seq_len
    # train loop
    logger.info(f"{color.red}***** Running training *****{color.reset}")
    logger.info(f"{color.green}  Training starts at step {train_state.step + 1}")
    logger.info(
        f"{color.green}  Number of tokens per sequence = {job_config.training.seq_len:,}"
    )
    logger.info(
        f"{color.green}  Gradient Accumulation steps = {job_config.training.gradient_accumulation_steps}"
    )
    logger.info(
        f"{color.green}  Instantaneous batch size (per device) = {job_config.training.batch_size:,}"
    )
    logger.info(
        f"{color.green}  Global batch size (w. parallel, distributed & accumulation) = {global_batch_size:,}"
        f" ({num_tokens_per_step:,} tokens)"
    )
    logger.info(
        f"{color.green}  Total optimization steps = {job_config.training.steps:,} "
        f"({job_config.training.steps * num_tokens_per_step:,} tokens)"
    )
    logger.info(
        f"{color.green}  Warmup steps = {job_config.lr_scheduler.warmup_steps:,}"
        f" ({job_config.lr_scheduler.warmup_steps * num_tokens_per_step:,} tokens)"
    )
    logger.info(
        f"{color.green}  Number of parameters = {model_param_count:,} {color.reset}"
    )

    with (
        maybe_enable_profiling(
            job_config, global_step=train_state.step
        ) as torch_profiler,
        maybe_enable_memory_snapshot(
            job_config, global_step=train_state.step
        ) as memory_profiler,
    ):
        while train_state.step < job_config.training.steps:
            train_state.step += 1
            gc_handler.run(train_state.step)

            optimizers.zero_grad()

            losses = defaultdict(list)
            actual_loss = []
            # do gradient accumulation if enabled
            for _ in range(job_config.training.gradient_accumulation_steps):
                # get batch
                data_load_start = time.perf_counter()
                batch = next(data_iterator)
                # Recall that this is, for myopic and MTP, it will be 
                # input_ids : (B, seq_len)
                # labels : (B, seq_len * 2)
                input_ids, labels = batch["input_ids"][:, :job_config.training.seq_len], batch["labels"]

                # Update metrics processor state before forward/backward
                metric_logger.ntokens_since_last_log += input_ids.numel()
                metric_logger.data_loading_times.append(
                    time.perf_counter() - data_load_start
                )

                input_ids = input_ids.to(device_type)

                """
                TODO[flame]: We need to carefully handle the position_ids for TP/CP
                Depending on the Models'PE, the position_ids might be different.

                e.g. for TP
                    For RoPE, all ranks have the same position_ids. [FOR HF model]
                    For sinusoidal, each rank has the coresponding chunked  position_ids. [FOR HF model]

                e.g. for CP, [optional_context_parallel_ctx shoudl automatically distbute the position_ids]
                    Each rank has the coresponding chunked position_ids. [FOR All model]

                """
                labels = labels.to(device_type)
                cu_seqlens = (
                    batch["cu_seqlens"].to(device_type)
                    if "cu_seqlens" in batch
                    else None
                )
                if cu_seqlens is not None:
                    position_ids = prepare_position_ids(cu_seqlens).to(torch.int32)
                else:
                    position_ids = (
                        torch.arange(0, input_ids.shape[1], device=device_type)
                        .repeat(input_ids.shape[0], 1)
                        .to(torch.int32)
                    )
                # apply context parallelism if cp is enabled
                # ensure CP handles the separate freqs_cis buffer for each pp stage
                optional_context_parallel_ctx = (
                    dist_utils.create_context_parallel_ctx(
                        cp_mesh=world_mesh["cp"],
                        cp_buffers=[input_ids, labels, position_ids],
                        cp_seq_dims=[1, 1, 1],
                        cp_no_restore_buffers={input_ids, labels, position_ids},
                        cp_rotate_method=job_config.experimental.context_parallel_rotate_method,
                    )
                    if parallel_dims.cp_enabled
                    else None
                )

                # #! TODO[flame], we should distribute the position_ids as well with CP
                if parallel_dims.pp_enabled:
                    raise NotImplementedError(
                        "Pipeline parallelism is not supported in this version"
                    )
                    # Pipeline Parallel forward / backward inside step() call
                    with train_context(optional_context_parallel_ctx):
                        targets, losses = (
                            (labels, []) if has_last_stage else (None, None)
                        )

                        if has_first_stage:
                            pp_schedule.step(input_ids, target=targets, losses=losses)
                        else:
                            pp_schedule.step(target=targets, losses=losses)

                    # accumulate losses across pipeline microbatches
                    # TODO: PP+FSDP unexpectedly puts the loss back to the CPU
                    loss = (
                        torch.mean(torch.stack(losses)).to(device)
                        if has_last_stage
                        else torch.tensor([-1.0], device=device)
                    )
                else:
                    # Non-PP forward / backward
                    with train_context(optional_context_parallel_ctx):
                        output = model(
                            input_ids=input_ids,
                            labels=labels,
                            position_ids=position_ids,
                            cu_seqlens=cu_seqlens,
                        )
                        output_attributes = [field.name for field in dataclasses.fields(output)]
                        losses_atributes = [x for x in output_attributes if "loss" in x and x != "loss"]
                        loss = (
                            output.loss
                            / job_config.training.gradient_accumulation_steps
                        )
                        loss.backward()

                    actual_loss.append(loss)
                    for loss_attr in losses_atributes:
                        custom_loss = getattr(output, loss_attr, None)
                        if custom_loss is not None:
                            custom_loss = custom_loss / job_config.training.gradient_accumulation_steps
                            custom_loss = custom_loss
                            losses[loss_attr].append(custom_loss)

            loss = sum(actual_loss)
            for loss_attr, loss_values in losses.items():
                losses[loss_attr] = sum(loss_values)

            # clip gradients
            grad_norm = dist_utils.clip_grad_norm_(
                [p for m in model_parts for p in m.parameters()],
                job_config.training.max_norm,
                foreach=True,
                pp_mesh=pp_mesh if parallel_dims.pp_enabled else None,
            )

            # optimizer step
            checkpoint.maybe_wait_for_staging()
            if job_config.training.skip_nan_inf and (
                grad_norm.isnan() or grad_norm.isinf()
            ):
                logger.warning(
                    f"Skipping optimizer step - detected invalid gradient norm: {grad_norm:.4f}"
                )
                optimizers.zero_grad()
                train_state.skipped_step += 1
            else:
                optimizers.step()
            lr_schedulers.step()

            # log metrics - Use MetricsProcessor
            global_avg_custom_loss = {}
            global_max_custom_loss = {}
            if metric_logger.should_log(train_state.step):
                if (
                    parallel_dims.dp_replicate_enabled
                    or parallel_dims.dp_shard_enabled
                    or parallel_dims.cp_enabled
                ):
                    loss = loss.detach()
                    # Use dist_mean/max on the accumulated loss for the step
                    global_avg_loss, global_max_loss = (
                        dist_utils.dist_mean(
                            loss,
                            world_mesh["dp_cp"],
                        ),
                        dist_utils.dist_max(
                            loss,
                            world_mesh["dp_cp"],
                        ),
                    )
                    for loss_attr, loss_value in losses.items():
                        global_avg_custom_loss[loss_attr] = dist_utils.dist_mean(
                            loss_value, world_mesh["dp_cp"]
                        )
                        global_max_custom_loss[loss_attr] = dist_utils.dist_max(
                            loss_value, world_mesh["dp_cp"]
                        )
                else:
                    # Scale back the loss before logging
                    global_avg_loss = global_max_loss = loss.item()
                    for loss_attr, loss_value in losses.items():
                        global_avg_custom_loss[loss_attr] = global_max_custom_loss[
                            loss_attr
                        ] = loss_value.item()

                # Update train state tokens and elapsed time
                time_now = time.perf_counter()
                time_delta = (
                    time_now - metric_logger.time_last_log
                )  # Use metric_logger's time
                train_state.token += (
                    metric_logger.ntokens_since_last_log  # Use tokens tracked by metric_logger
                    * parallel_dims.world_size
                    / parallel_dims.non_data_parallel_size
                )
                train_state.elapsed += timedelta(seconds=time_delta)
                train_state.log_steps.append(train_state.step)
                train_state.global_avg_losses.append(global_avg_loss)
                train_state.global_max_losses.append(global_max_loss)

                # Log using the metric processor
                last_lr = lr_schedulers.schedulers[0].get_last_lr()[0]
                eta = (
                    train_state.elapsed
                    * (job_config.training.steps - train_state.step)
                    / train_state.step
                )
                extra_metrics = {
                    "optimizer/lr": last_lr,
                    "optimizer/grad_norm": grad_norm.item(),
                    "optimizer/skipped_step": train_state.skipped_step,
                }
                for loss_attr, loss_value in global_avg_custom_loss.items():
                    extra_metrics[f"loss_metrics/global_avg_{loss_attr}"] = loss_value.item() if isinstance(loss_value, torch.Tensor) else loss_value
                metric_logger.log(
                    train_state.step,
                    global_avg_loss,
                    global_max_loss,
                    extra_metrics=extra_metrics,
                )

                logger.info(
                    f"{color.blue}lr: {last_lr:.4e} gnorm: {grad_norm:5.2f} "
                    f"{color.magenta}[{str(train_state.elapsed).split('.')[0]:>8}<{str(eta).split('.')[0]:>8}]{color.reset}"
                )

            checkpoint.save(
                train_state.step, force=(train_state.step == job_config.training.steps)
            )
            
            if torch.distributed.get_rank() == 0:
                if job_config.checkpoint.enable_checkpoint:
                    hf_target_path = None
                    dcp_save_path = os.path.join(job_config.job.dump_folder, job_config.checkpoint.folder, f"step-{train_state.step}") 

                    # TODO: Haven't tested this one yet
                    if getattr(job_config.checkpoint, "convert_to_hf_on_save", False):
                        try:
                            # Get the path where DCP was just saved
                            # Check CheckpointManager API for the best way, assuming get_save_path exists
                            hf_target_path = f"{dcp_save_path}" # e.g., .../checkpoint/step-1000-hf

                            logger.info(f"Converting step {train_state.step} DCP checkpoint to HF format at: {hf_target_path}")
                            save_pretrained( # Call the imported function
                                path=hf_target_path, # Pass target HF path as 'path'
                                step=train_state.step,
                                config=job_config.model.config, # Pass model config path/id
                                tokenizer=job_config.model.tokenizer_path # Pass tokenizer path/id
                            )
                            logger.info(f"Successfully converted step {train_state.step} to HF format.")

                        except Exception as e:
                            logger.error(f"Failed to convert checkpoint step {train_state.step} to HF format: {e}", exc_info=True)

                    base_checkpoint_dir = os.path.join(job_config.job.dump_folder, job_config.checkpoint.folder)
                    if getattr(job_config.checkpoint, "hf_upload_enabled", True):
                        upload_format = getattr(job_config.checkpoint, "hf_upload_format", "hf")
                        keep_k_hub = getattr(job_config.checkpoint, "hf_keep_latest_k", 5)

                        local_path_to_upload = None
                        if upload_format == "hf":
                            if hf_target_path and os.path.isdir(hf_target_path):
                                local_path_to_upload = hf_target_path
                        elif upload_format == "dcp":
                            if dcp_save_path and os.path.isdir(dcp_save_path):
                                local_path_to_upload = dcp_save_path

                        if local_path_to_upload:
                            try:
                                upload_checkpoint_to_hf(
                                    local_path=local_path_to_upload,
                                    step=train_state.step,
                                    hf_repo_id_for_run=run_specific_repo_id,
                                    upload_format=upload_format,
                                    hf_keep_latest_k=job_config.checkpoint.keep_latest_k,
                                )                               
                            except Exception as e:
                                logger.error(f"Failed during HF Hub upload for step {train_state.step}: {e}", exc_info=True)

            # signal the profiler that the next profiling step has started
            if torch_profiler:
                torch_profiler.step()
            if memory_profiler:
                memory_profiler.step()

            # reduce timeout after first train step for faster signal
            # (assuming lazy init and compilation are finished)
            if train_state.step == 1:
                dist_utils.set_pg_timeouts(
                    timeout=timedelta(seconds=job_config.comm.train_timeout_seconds),
                    world_mesh=world_mesh,
                )

    if torch.distributed.get_rank() == 0:
        logger.info("Sleeping 2 seconds for other ranks to complete")
        time.sleep(2)

    metric_logger.close()
    logger.info("Training completed")


if __name__ == "__main__":
    init_logger()
    config = JobConfig()
    config.parse_args()
    main(config)
    torch.distributed.destroy_process_group()