File size: 26,332 Bytes
ec1fbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import copy
import pickle
from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
import datasets
import numpy as np
import torch
from datasets import Dataset, IterableDataset
from datasets.iterable_dataset import ShufflingConfig
from torch.distributed.checkpoint.stateful import Stateful
from torchdata.stateful_dataloader import StatefulDataLoader
from transformers import PreTrainedTokenizer
from torchtitan.tools.logging import logger
class BufferShuffledIterableDataset(IterableDataset):
def __init__(
self,
dataset: Dataset,
tokenizer: PreTrainedTokenizer,
seq_len: int = 2048,
rank: int = 0,
world_size: int = 1,
buffer_size: int = 1024,
) -> BufferShuffledIterableDataset:
self.dataset = dataset
self.tokenizer = tokenizer
self.data = dataset.shard(world_size, rank)
self.seq_len = seq_len
self.rank = rank
self.world_size = world_size
self.buffer_size = buffer_size
if tokenizer.vocab_size < torch.iinfo(torch.int16).max:
self.dtype = torch.int16
elif tokenizer.vocab_size < torch.iinfo(torch.int32).max:
self.dtype = torch.int32
else:
self.dtype = torch.int64
self.states = None
self.buffer = torch.tensor([], dtype=self.dtype)
self.tokens = []
self.rand_id = 0
self.token_id = 0
self.rng_state = None
self._epoch = 0
def __iter__(self):
g = torch.Generator()
g.manual_seed(self._epoch + self.rank)
if self.rng_state is not None:
g.set_state(self.rng_state)
rand_it = self.randint(0, self.buffer_size, g=g)
if self.states is not None:
self.data.load_state_dict(self.states)
# max number of tokens allowed in the chunk buffer
n_tokens = self.buffer_size * self.seq_len
while True:
for sample in self.tokenize(self.data):
# keep appending the samples to the token buffer
self.tokens += sample
# if the token buffer is full, start sampling
# NOTE: we first convert the token ids to a tensor of shape [n_chunks, seq_len] for efficiency
if len(self.buffer) == 0 and len(self.tokens) >= n_tokens:
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=self.dtype).view(self.buffer_size, -1)
self.tokens = self.tokens[n_tokens:]
if len(self.buffer) == self.buffer_size:
yield from self.sample(rand_it)
n_chunks = len(self.tokens) // self.seq_len
# handle the left tokens in the buffer
if n_chunks > 0:
n_tokens = n_chunks * self.seq_len
indices = torch.randperm(n_chunks, generator=g).tolist()
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=torch.long).view(n_chunks, -1)
self.tokens = self.tokens[n_tokens:]
for i in indices:
yield {'input_ids': self.buffer[i]}
def tokenize(self, data, batch_size: int = 64):
texts, states = [], []
for sample in data:
texts.append(sample['text'])
states.append(self.data.state_dict())
if len(texts) == batch_size:
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
texts, states = [], []
if len(texts) > 0:
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
def sample(self, indices):
n_tokens = (len(self.tokens) // self.seq_len) * self.seq_len
while self.token_id < n_tokens:
i = next(indices)
start, end = self.token_id, self.token_id + self.seq_len
self.token_id += self.seq_len
yield {'input_ids': self.buffer[i].to(torch.long)}
self.buffer[i] = torch.tensor(self.tokens[start:end], dtype=self.dtype)
self.token_id = 0
self.tokens = self.tokens[n_tokens:]
def randint(self, low: int, high: int, buffer_size: int = 1024, g: torch.Generator = torch.Generator()) -> Iterable[int]:
indices = torch.empty(buffer_size, dtype=torch.long)
while True:
# record the generator states before sampling
self.rng_state = g.get_state()
indices = torch.randint(low, high, (buffer_size,), out=indices, generator=g)
for i in indices[self.rand_id:].tolist():
self.rand_id += 1
yield i
self.rand_id = 0
def set_epoch(self, epoch):
self._epoch = epoch
if hasattr(self.dataset, 'set_epoch'):
self.dataset.set_epoch(epoch)
def state_dict(self):
return {
'states': self.states,
'buffer': self.buffer.clone(),
'tokens': deepcopy(self.tokens),
'rand_id': self.rand_id,
'token_id': self.token_id,
'rng_state': self.rng_state,
'epoch': self._epoch,
}
def load_state_dict(self, state_dict):
self.states = state_dict['states']
self.buffer = state_dict['buffer'].clone()
self.tokens = deepcopy(state_dict['tokens'])
self.rand_id = state_dict['rand_id']
self.token_id = state_dict['token_id']
self.rng_state = state_dict['rng_state'].clone() if state_dict['rng_state'] is not None else None
self._epoch = state_dict['epoch']
class OnlineTokenizedIterableDataset(IterableDataset):
def __init__(
self, dataset: Dataset, tokenizer: PreTrainedTokenizer, seq_len: int = 2048, rank: int = 0, world_size: int = 1
) -> OnlineTokenizedIterableDataset:
self.dataset = dataset
self.tokenizer = tokenizer
self.data = dataset.shard(world_size, rank)
self.seq_len = seq_len
self.rank = rank
self.world_size = world_size
self.states = None
self.tokens = []
def __iter__(self):
if self.states is not None:
self.data.load_state_dict(self.states)
while True:
for sample in self.tokenize(self.data):
# keep appending the samples to the token buffer
self.tokens += sample
while len(self.tokens) >= self.seq_len:
input_ids = torch.tensor(self.tokens[:self.seq_len], dtype=torch.long)
self.tokens = self.tokens[self.seq_len:]
yield {'input_ids': input_ids}
def tokenize(self, data, buffer_size: int = 64):
buffer, states = [], []
for sample in data:
if sample.get('text', None) is not None:
buffer.append(sample['text'])
elif sample.get('content', None) is not None:
buffer.append(sample['content'])
else:
raise ValueError(f"No 'text' or 'content' field found in sample:\n{sample}")
states.append(self.data.state_dict())
if len(buffer) == buffer_size:
for s, tokenized in zip(states, self.tokenizer(buffer, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
buffer, states = [], []
if len(buffer) > 0:
for s, tokenized in zip(states, self.tokenizer(buffer, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
def state_dict(self):
return {'states': self.states, 'tokens': deepcopy(self.tokens)}
def load_state_dict(self, state_dict):
self.states = state_dict['states']
self.tokens = deepcopy(state_dict['tokens'])
class BufferShuffledExamplesIterable(datasets.iterable_dataset.BufferShuffledExamplesIterable):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _init_state_dict(self) -> dict:
self._state_dict = self.ex_iterable._init_state_dict()
self._state_dict['mem_buffer'] = ([],)
self._state_dict['bit_generator_state'] = self.generator.bit_generator.state
self._state_dict['bit_generator_index_offset'] = 0
self._state_dict['bit_generator_index_offset_shuffle'] = 0
return self._state_dict
def __iter__(self):
buffer_size = self.buffer_size
rng = deepcopy(self.generator)
# this is the shuffle buffer that we keep in memory
mem_buffer = self._state_dict['mem_buffer'][0]
# this is an infinite iterator that randomly samples the index of the source to pick examples from
index_offset = self._state_dict['bit_generator_index_offset'] if self._state_dict else 0
if self._state_dict:
rng.bit_generator.state = self._state_dict['bit_generator_state']
indices_iterator = self._iter_random_indices(rng, buffer_size, random_batch_size=buffer_size)
# skip already consumed ones
for _ in range(index_offset):
i = next(indices_iterator)
for x in self.ex_iterable:
if len(mem_buffer) < buffer_size: # if the buffer is not full, keep filling the buffer
mem_buffer.append(x)
else: # otherwise, pick an example from it
i = next(indices_iterator)
index_offset = (index_offset + 1) % buffer_size
if self._state_dict:
self._state_dict['bit_generator_index_offset'] = index_offset
if index_offset == 0:
self._state_dict['bit_generator_state'] = rng.bit_generator.state
selected = mem_buffer[i]
mem_buffer[i] = x # replace the picked example by a new one
yield selected
index_offset = self._state_dict['bit_generator_index_offset_shuffle'] if self._state_dict else 0
if self._state_dict:
rng.bit_generator.state = self._state_dict['bit_generator_state']
# when we run out of examples, we shuffle the remaining examples in the buffer and yield them
for i in rng.permutation(len(mem_buffer))[index_offset:].tolist():
index_offset = index_offset + 1
if self._state_dict:
self._state_dict['bit_generator_index_offset_shuffle'] = index_offset
yield mem_buffer[i]
def shuffle_data_sources(self, generator: np.random.Generator) -> BufferShuffledExamplesIterable:
"""Shuffle the wrapped examples iterable as well as the shuffling buffer."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> BufferShuffledExamplesIterable:
"""Keep only the requested shard."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
buffer_size=self.buffer_size,
generator=self.generator,
)
def load_state_dict(self, state_dict: dict) -> dict:
def _inner_load_state_dict(state, new_state):
if new_state is not None and isinstance(state, dict):
for key in new_state:
state[key] = _inner_load_state_dict(state[key], new_state[key])
return state
elif new_state is not None and isinstance(state, list):
for i in range(len(state)):
state[i] = _inner_load_state_dict(state[i], new_state[i])
return state
return new_state
return _inner_load_state_dict(self._state_dict, state_dict)
def shuffle(
dataset: IterableDataset,
seed: int = 42,
generator: np.random.Generator = None,
buffer_size: int = 1024,
):
generator = np.random.default_rng(seed) if generator is None else deepcopy(generator)
return IterableDataset(
ex_iterable=BufferShuffledExamplesIterable(dataset._ex_iterable, buffer_size=buffer_size, generator=generator),
info=dataset._info.copy(),
split=dataset._split,
formatting=dataset._formatting,
shuffling=ShufflingConfig(generator=generator, _original_seed=seed),
distributed=copy.deepcopy(dataset._distributed),
token_per_repo_id=dataset._token_per_repo_id,
)
@dataclass
class DataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded if `varlen=False`.
If `varlen=True`, sequences are expected to be concatenated, and labels match inputs.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
context_len (`int`, optional):
When `varlen=True`, sequences longer than this length within a document
(as determined by `cu_seqlens`) will be further chunked.
varlen (`bool`):
Whether to handle variable length concatenated sequences (`True`) or padded batches (`False`).
Returns:
A dictionary with the following keys:
- `input_ids`: Tensor of input IDs. Shape `[batch_size, seq_len]` if `varlen=False`, `[1, total_len]` if `varlen=True`.
- `labels`: Tensor of labels. Shape matches `input_ids`. Padding positions are masked with -100 if `varlen=False`.
- `attention_mask`: Tensor indicating non-padding tokens (only if `varlen=False`). Shape matches `input_ids`.
- `cu_seqlens`: Tensor of cumulative sequence lengths (only if `varlen=True`). Shape `[1, num_sequences + 1]`.
NOTE: When `varlen=True`, the `batch_size` must be 1.
"""
tokenizer: PreTrainedTokenizer
context_len: Optional[int] = None
varlen: bool = False
def __call__(self, examples: List[Union[List[int], Dict[str, Any]]]) -> Dict[str, Any]:
if not isinstance(examples[0], Dict):
examples = [{'input_ids': example} for example in examples]
def tensorize(example: Dict[str, Any]) -> Dict[str, Any]:
tensorized = {}
for key in ['input_ids', 'cu_seqlens']:
if key not in example:
continue
if isinstance(example[key], List):
tensorized[key] = torch.tensor(example[key], dtype=torch.long)
elif isinstance(example[key], np.ndarray):
tensorized[key] = torch.from_numpy(example[key])
else:
tensorized[key] = example[key]
return tensorized
examples = list(map(tensorize, examples))
if not self.varlen:
# --- Handling for varlen=False (Batch Padding) ---
length_of_first = examples[0]['input_ids'].size(0)
needs_padding = not all(example['input_ids'].size(0) == length_of_first for example in examples)
if needs_padding:
# Check for pad token if padding is actually required
if self.tokenizer.pad_token_id is None:
raise ValueError(
f'You are attempting to pad samples but the tokenizer you are using '
f'({self.tokenizer.__class__.__name__}) does not have a pad token.'
)
# Pad using the tokenizer, ensuring attention_mask is returned
batch = self.tokenizer.pad(examples, return_tensors='pt', return_attention_mask=True)
else:
# No padding needed, stack directly and create a full attention mask
input_ids = torch.stack([example['input_ids'] for example in examples], dim=0)
batch = {
'input_ids': input_ids,
# Create attention mask of all ones
'attention_mask': torch.ones_like(input_ids),
}
# Create labels by cloning input_ids
labels = batch['input_ids'].clone()
# Mask labels only where attention_mask is 0 (padding positions)
if 'attention_mask' in batch:
labels[batch['attention_mask'] == 0] = -100
batch['labels'] = labels
else:
# --- Handling for varlen=True (Concatenated Sequences) ---
if len(examples) > 1:
raise ValueError('The batch size must be 1 for inputs with variable lengths (varlen=True).')
batch = {'input_ids': torch.cat([example['input_ids'] for example in examples], dim=0).unsqueeze(0)}
# --- cu_seqlens calculation logic remains the same ---
if 'cu_seqlens' in examples[0]:
batch['cu_seqlens'] = (
torch.cat([example['cu_seqlens'] for example in examples], dim=0).unsqueeze(0).to(dtype=torch.int32)
) # Ensure int32
else:
# determine boundaries by bos/eos positions
# Check for bos_token_id first
if self.tokenizer.bos_token_id is not None:
cu_seqlens = []
# Handle case where the sequence doesn't start with BOS
if batch['input_ids'][0, 0] != self.tokenizer.bos_token_id:
cu_seqlens.append(torch.tensor([0], device=batch['input_ids'].device)) # Match device
# Find all BOS token positions
bos_positions = torch.where(batch['input_ids'].eq(self.tokenizer.bos_token_id))[1]
# Ensure bos_positions is on the correct device if empty
if bos_positions.numel() == 0 and len(cu_seqlens) > 0:
cu_seqlens.append(bos_positions.to(cu_seqlens[0].device))
elif bos_positions.numel() > 0:
cu_seqlens.append(bos_positions)
# Add the end of the entire batch
cu_seqlens.append(
torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
) # Match device and use size(1)
# Filter out empty tensors before cat
cu_seqlens = [t for t in cu_seqlens if t.numel() > 0]
if not cu_seqlens: # Handle case where input is empty or has no BOS
batch['cu_seqlens'] = torch.tensor(
[0, batch['input_ids'].size(1)], dtype=torch.int32, device=batch['input_ids'].device
)
else:
batch['cu_seqlens'] = torch.cat(cu_seqlens, dim=0).to(dtype=torch.int32)
# Else, check for eos_token_id
elif self.tokenizer.eos_token_id is not None:
cu_seqlens = [torch.tensor([0], device=batch['input_ids'].device)] # Match device
# Find positions *after* EOS tokens
eos_positions = torch.where(batch['input_ids'].eq(self.tokenizer.eos_token_id))[1] + 1
# Ensure eos_positions is on the correct device if empty
if eos_positions.numel() > 0:
cu_seqlens.append(eos_positions)
# Handle case where the sequence doesn't end with EOS
if batch['input_ids'][0, -1] != self.tokenizer.eos_token_id:
# Only add the final length if the last found EOS wasn't already the end
if eos_positions.numel() == 0 or eos_positions[-1] != batch['input_ids'].size(1):
cu_seqlens.append(
torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
) # Match device and use size(1)
# Filter out empty tensors before cat
cu_seqlens = [t for t in cu_seqlens if t.numel() > 0]
if not cu_seqlens: # Handle case where input is empty or has no EOS
batch['cu_seqlens'] = torch.tensor(
[0, batch['input_ids'].size(1)], dtype=torch.int32, device=batch['input_ids'].device
)
else:
batch['cu_seqlens'] = torch.cat(cu_seqlens, dim=0).to(dtype=torch.int32)
# Else, neither BOS nor EOS is usable
else:
raise ValueError(
'For varlen=True without precomputed cu_seqlens, the tokenizer must have either a bos_token_id '
'or an eos_token_id defined to act as sequence separators.'
)
# --- cu_seqlens validation checks remain the same ---
if batch['cu_seqlens'].numel() < 2:
raise ValueError(f'Calculated cu_seqlens must have at least start and end: {batch["cu_seqlens"]}')
if not torch.all(batch['cu_seqlens'][1:] >= batch['cu_seqlens'][:-1]):
raise ValueError(f'Calculated cu_seqlens are not monotonically increasing: {batch["cu_seqlens"]}')
if batch['cu_seqlens'][0] != 0:
raise ValueError(f'Calculated cu_seqlens do not start at 0: {batch["cu_seqlens"]}')
if batch['cu_seqlens'][-1] != batch['input_ids'].size(1):
# Allow empty sequence case where cu_seqlens=[0, 0] and input_ids.size(1)=0
if not (batch['cu_seqlens'].tolist() == [0, 0] and batch['input_ids'].size(1) == 0):
raise ValueError(
f'Calculated cu_seqlens do not end at total length {batch["input_ids"].size(1)}: '
f'{batch["cu_seqlens"]}'
)
# --- context_len splitting logic remains the same ---
if self.context_len is not None:
# This logic splits sequences based on context_len *after* initial boundaries are found
bos = batch['cu_seqlens'][:-1].tolist()
eos = batch['cu_seqlens'][1:].tolist()
# Handle empty sequences between boundaries
split_boundaries = []
for i, j in zip(bos, eos):
if i < j: # Only process non-empty sequences
split_boundaries.append(torch.arange(i, j, self.context_len, device=batch['input_ids'].device))
# Add the final end point if it wasn't included by arange
final_end_point = torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
# Concatenate all boundaries
if not split_boundaries: # Handle case of completely empty input
batch['cu_seqlens'] = torch.tensor([0, 0], dtype=torch.int32, device=batch['input_ids'].device)
else:
batch['cu_seqlens'] = torch.cat(split_boundaries + [final_end_point]).to(dtype=torch.int32)
# Ensure uniqueness and sort, as arange might duplicate the endpoint
batch['cu_seqlens'] = torch.unique(batch['cu_seqlens'])
# Create labels directly from input_ids, NO padding mask needed for varlen
labels = batch['input_ids'].clone()
batch['labels'] = labels
return batch
class ParallelAwareDataLoader(StatefulDataLoader, Stateful):
"""
A wrapper around the StatefulDataLoader that ensures that the state is stored only once per DP rank.
"""
def __init__(
self,
rank: int,
dataset: IterableDataset,
batch_size: int,
collate_fn: Callable,
num_workers: int = 0,
pin_memory: bool = False,
prefetch_factor: int = 2,
persistent_workers: bool = False,
snapshot_every_n_steps: Optional[int] = 1,
):
super().__init__(
dataset=dataset,
batch_size=batch_size,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=pin_memory,
prefetch_factor=prefetch_factor,
persistent_workers=persistent_workers,
snapshot_every_n_steps=snapshot_every_n_steps,
)
self.rank = rank
def state_dict(self) -> Dict[str, Any]:
# Store state only for dp rank to avoid replicating the same state across other dimensions
return {f'rank_{self.rank}': pickle.dumps(super().state_dict())}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
# State being empty is valid
if not state_dict:
return
if f'rank_{self.rank}' not in state_dict:
logger.warning(f'DataLoader state is empty for dp rank {self.rank}, expected key rank_{self.rank}')
return
super().load_state_dict(pickle.loads(state_dict[f'rank_{self.rank}']))
def build_dataloader(
dataset: IterableDataset,
tokenizer: PreTrainedTokenizer,
rank: int,
world_size: int,
batch_size: int,
seq_len: int,
context_len: Optional[int] = None,
varlen: bool = False,
num_workers: int = 0,
pin_memory: bool = False,
persistent_workers: bool = False,
snapshot_every_n_steps: Optional[int] = 1,
):
dataset = OnlineTokenizedIterableDataset(
dataset=dataset, tokenizer=tokenizer, seq_len=seq_len, rank=rank, world_size=world_size
)
return ParallelAwareDataLoader(
rank=rank,
dataset=dataset,
batch_size=batch_size,
collate_fn=DataCollatorForLanguageModeling(tokenizer=tokenizer, context_len=context_len, varlen=varlen),
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers,
snapshot_every_n_steps=snapshot_every_n_steps,
)
|