File size: 15,383 Bytes
7fdd671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# -*- coding: utf-8 -*-
# https://github.com/huggingface/trl/blob/main/trl/trainer/grpo_trainer.py
"""
# Get the per-token log probabilities for the completions for the model and the reference model
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
input_ids = input_ids[:, -logits_to_keep:]
# For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
# See https://github.com/huggingface/trl/issues/2770
logits = logits[:, -logits_to_keep:]
return selective_log_softmax(logits, input_ids) # compute logprobs for the input tokens
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
if return_outputs:
raise ValueError("The GRPOTrainer does not support returning outputs")
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)
# Compute the KL divergence between the model and the reference model
ref_per_token_logps = inputs["ref_per_token_logps"]
per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
# x - x.detach() allows for preserving gradients from x
advantages = inputs["advantages"]
per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
per_token_loss = -(per_token_loss - self.beta * per_token_kl)
loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
# Log the metrics
completion_length = self.accelerator.gather_for_metrics(completion_mask.sum(1)).float().mean().item()
self._metrics["completion_length"].append(completion_length)
mean_kl = ((per_token_kl * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
self._metrics["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
return loss
"""
import torch
import triton
import triton.language as tl
from fla.ops.utils.op import exp, log
from fla.utils import input_guard
@triton.autotune(
[triton.Config({'BLOCK_SIZE': BLOCK_SIZE}, num_warps=NUM_WARPS, num_stages=NUM_STAGES)
for BLOCK_SIZE in [1024, 2048, 4096, 8192]
for NUM_WARPS in [8, 16, 32]
for NUM_STAGES in [1, 2, 4]
], key=['B', 'N']
)
@triton.jit
def grpo_fwd_kernel(
logits_ptr,
ref_logp_ptr,
input_ids_ptr,
advantages_ptr,
completion_mask_ptr,
loss_ptr,
lse_ptr,
beta,
save_kl: tl.constexpr,
B,
M,
N,
L,
start_idx,
BLOCK_SIZE: tl.constexpr
):
row_idx = tl.program_id(0)
off_b = row_idx // L
N = tl.cast(N, tl.int64)
loss_ptr += row_idx
completion_mask_ptr += row_idx
not_skip = tl.load(completion_mask_ptr).to(tl.int1)
if not_skip == 1:
ref_logp_ptr += row_idx
lse_ptr += row_idx
advantages_ptr += off_b
logits_ptr += N * (row_idx + off_b)
input_ids_ptr += row_idx + (off_b+1) * start_idx
base_cols = tl.arange(0, BLOCK_SIZE)
m_i = -float("inf")
l_i = 0.0
for start_n in tl.range(0, N, BLOCK_SIZE):
cols = start_n + base_cols
mask = cols < N
logits = tl.load(logits_ptr+cols, mask=mask, other=-float('inf')).to(tl.float32)
m_ij = tl.max(logits)
new_m_i = tl.maximum(m_i, m_ij)
l_i = l_i * exp(m_i - new_m_i) + tl.sum(exp(logits - new_m_i))
m_i = new_m_i
lse = log(l_i) + m_i
idx = tl.load(input_ids_ptr)
x = tl.load(logits_ptr+idx).to(tl.float32)
advantage = tl.load(advantages_ptr).to(tl.float32)
ref_logp = tl.load(ref_logp_ptr)
logp = x - lse
diff = ref_logp - logp
kl = exp(diff) - diff - 1
loss = kl * beta - advantage
tl.store(loss_ptr, loss.to(loss_ptr.dtype.element_ty))
tl.store(lse_ptr, lse.to(lse_ptr.dtype.element_ty))
if save_kl:
tl.store(loss_ptr+M, kl.to(loss_ptr.dtype.element_ty))
else:
# store 0
tl.store(loss_ptr, 0.0)
if save_kl:
tl.store(loss_ptr+M, 0.0)
@triton.autotune(
[triton.Config({'BLOCK_SIZE': BLOCK_SIZE}, num_warps=NUM_WARPS, num_stages=NUM_STAGES)
for BLOCK_SIZE in [1024, 2048, 4096, 8192]
for NUM_WARPS in [8, 16, 32]
for NUM_STAGES in [1, 2, 4]
], key=['B', 'N']
)
@triton.jit
def grpo_bwd_kernel(
dloss_ptr,
dlogits_ptr,
logits_ptr,
ref_logp_ptr,
input_ids_ptr,
advantages_ptr,
completion_mask_ptr,
lse_ptr,
beta,
B,
N,
L,
start_idx,
BLOCK_SIZE: tl.constexpr
):
row_idx = tl.program_id(0) # B*L
off_b = row_idx // L
N = tl.cast(N, tl.int64)
dlogits_ptr += N * (row_idx + off_b)
base_cols = tl.arange(0, BLOCK_SIZE)
completion_mask_ptr += row_idx
not_skip = tl.load(completion_mask_ptr).to(tl.int1)
if not_skip == 1:
lse_ptr += row_idx
dloss_ptr += row_idx
advantages_ptr += off_b
ref_logp_ptr += row_idx
logits_ptr += N * (row_idx + off_b)
input_ids_ptr += row_idx + (off_b+1) * start_idx
dloss = tl.load(dloss_ptr).to(tl.float32)
lse = tl.load(lse_ptr).to(tl.float32)
idx = tl.load(input_ids_ptr)
x = tl.load(logits_ptr+idx).to(tl.float32)
advantage = tl.load(advantages_ptr).to(tl.float32)
ref_logp = tl.load(ref_logp_ptr)
logp = x - lse
dlogp = (beta * (-1.0 * exp(ref_logp - logp) + 1)
- advantage) * dloss
for start_n in tl.range(0, N, BLOCK_SIZE):
cols = start_n + base_cols
mask = cols < N
logits = tl.load(logits_ptr+cols, mask=mask, other=-float('inf')).to(tl.float32)
probs = exp(logits - lse)
dlogits = tl.where(cols == idx, 1-probs, -probs) * dlogp
tl.store(dlogits_ptr+cols, dlogits.to(dlogits_ptr.dtype.element_ty), mask=mask)
else:
dlogits = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
for start_n in tl.range(0, N, BLOCK_SIZE):
cols = start_n + base_cols
mask = cols < N
tl.store(dlogits_ptr+cols, dlogits.to(dlogits_ptr.dtype.element_ty), mask=mask)
class GrpoLoss(torch.autograd.Function):
@input_guard
@staticmethod
def forward(ctx, logits, ref_logp, input_ids, advantages, beta, completion_mask, save_kl):
ctx.input_shape = logits.shape
B, L_ADD_1, N = ctx.input_shape
L = L_ADD_1 - 1
M = B * L
input_ids_start_index = input_ids.size(1) - L
if not save_kl:
loss = torch.empty(B, L, device=logits.device, dtype=torch.float32)
else:
loss = torch.empty(B*2, L, device=logits.device, dtype=torch.float32)
lse = torch.empty(B, L, device=logits.device, dtype=torch.float32)
if completion_mask is None:
completion_mask = torch.ones(B, L, device=logits.device, dtype=torch.int32)
else:
loss[:B].masked_fill_(completion_mask.logical_not(), 0.0)
grpo_fwd_kernel[(M,)](
logits_ptr=logits,
ref_logp_ptr=ref_logp,
input_ids_ptr=input_ids,
advantages_ptr=advantages,
completion_mask_ptr=completion_mask,
loss_ptr=loss,
lse_ptr=lse,
beta=beta,
save_kl=save_kl,
B=B, M=M, N=N, L=L,
start_idx=input_ids_start_index,
)
ctx.beta = beta
ctx.save_for_backward(lse, logits, input_ids, advantages, completion_mask)
ctx.ref_logp = ref_logp
return loss
@input_guard
@staticmethod
def backward(ctx, dloss):
# The grad of logits comes from two parts, the reward part and the kl part
lse, logits, input_ids, advantages, completion_mask = ctx.saved_tensors
B, L_ADD_1, N = ctx.input_shape
L = L_ADD_1 - 1
M = B * L
input_ids_start_index = input_ids.size(1) - L
dlogits = torch.empty_like(logits) # B, L_ADD_1, N
grpo_bwd_kernel[(M,)](
dloss_ptr=dloss,
dlogits_ptr=dlogits,
logits_ptr=logits,
ref_logp_ptr=ctx.ref_logp,
input_ids_ptr=input_ids,
advantages_ptr=advantages,
completion_mask_ptr=completion_mask,
lse_ptr=lse,
beta=ctx.beta,
B=B, N=N, L=L,
start_idx=input_ids_start_index,
)
# The last token in the completion is not used in the loss computation
# and therefore its gradient should be set to 0
dlogits[:, -1, :].fill_(0.0)
return dlogits.view(*ctx.input_shape), None, None, None, None, None, None
def fused_grpo_loss(logits, ref_logp, input_ids, advantages, beta=0.1, completion_mask=None, save_kl=False) -> torch.Tensor:
'''
compute grpo loss, save memory(no addition usage) and fast speed(6X for A800)
Args:
logtits: Tensor, [B, L+1, vocab_size], the origin output of model, it's not logits[:, :-1]
ref_logp: Tensor, [B, L], the origin output of model, it's not ref_logits[:, :-1]
input_ids: Tensor, [B, K+L], it's prompt_completion_id, it contains the prompt ids and output ids
advantages: Tensor, [B], the advantages of each prompt
beta: float, the weight of kl loss
completion_mask: Tensor, loss mask
save_kl: bool, if true will save kl
Retutn:
loss: Tensor, [B, L], the loss of grpo, it contains the advantage part and kl part
NOTE: logits(ref_logits) is computed by these steps
logits_to_keep = completion_ids.size(1)
def get_per_token_logits(model, input_ids, attention_mask, logits_to_keep):
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
logits = model(
input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1
).logits
return logits
logits = get_per_token_logits(model, prompt_completion_ids, attention_mask, logits_to_keep)
'''
out = GrpoLoss.apply(logits, ref_logp, input_ids, advantages, beta, completion_mask, save_kl)
if not save_kl:
return out
else:
return out.chunk(2, axis=0)
def grpo_loss_torch(logits, ref_logp, input_ids, advantages, beta=0.1, completion_mask=None, save_kl=False):
def get_log_probs(logits, input_ids):
per_token_logps = []
for logits_row, input_ids_row in zip(logits, input_ids[:, -logits.size(1):]):
log_probs = logits_row.log_softmax(dim=-1)
token_log_prob = torch.gather(log_probs, dim=1, index=input_ids_row.unsqueeze(1)).squeeze(1)
per_token_logps.append(token_log_prob)
return torch.stack(per_token_logps)
logits = logits[:, :-1]
per_token_logps = get_log_probs(logits, input_ids)
ref_per_token_logps = ref_logp
per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
per_token_loss = -(per_token_loss - beta * per_token_kl)
if completion_mask is not None:
per_token_loss *= completion_mask
if save_kl:
per_token_kl *= completion_mask
return per_token_loss if not save_kl else (per_token_loss, per_token_kl)
@torch.compile(fullgraph=True)
def grpo_loss_with_old_logps(
logps: torch.Tensor,
ref_logps: torch.Tensor,
old_logps: torch.Tensor,
pad_mask: torch.Tensor,
logits_to_keep: int,
rewards: torch.Tensor,
beta: float = 0.2,
epsilon: float = 0.2
):
"""
Compute the GRPO (Group Relative Policy Optimization) loss.
Args:
logps (torch.Tensor): [Batch, Token_length] Log probabilities of the current policy.
ref_logps (torch.Tensor):[Batch, Token_length] Log probabilities of the reference policy.
old_logps (torch.Tensor): [Batch, Token_length] Log probabilities of the old policy.
completion_ids (torch.Tensor): [Batch, Token_length] Completion token IDs (bool).
pad_token_id: Pad token ID.
logits_to_keep (int): Number of logits to keep for masking.
rewards (torch.Tensor): [Batch] Rewards for each generation.
beta (float) = 0.2: A hyperparameter for weighting the KL divergence term.
epsilon (float) = 0.2: An float hyperparameter for clipping the importance weights.
Returns:
torch.Tensor: The computed GRPO loss.
"""
B = logps.shape[0]
assert B > 1, "Batch * Num generations should be greater than 1"
rewards_shaped = rewards.view(-1, B) # B,num_generations
advantages = (rewards_shaped - rewards_shaped.mean(dim=1, keepdim=True)) / \
(rewards_shaped.std(dim=1, keepdim=True) + 1e-8)
advantages = advantages.view(-1) # B*num_generations
# Calculate the per - token KL divergence
per_token_kl = torch.exp(ref_logps - logps) - (ref_logps - logps) - 1
# Calculate the ratio of probabilities (importance weights)
# Importance weights are calculated as exp(log_pi_theta - log_pi_theta_old)
importance_weights = torch.exp(logps - old_logps)
# Clip the importance weights to the range [1 - epsilon, 1 + epsilon]
importance_weights_clipped = torch.clamp(importance_weights, 1 - epsilon, 1 + epsilon)
# Create a completion mask. It checks which positions are valid based on logits_to_keep
completion_mask = torch.arange(logits_to_keep, device=logps.device)[None, :] >= 0
# Combine the completion mask and padding mask
completion_mask = completion_mask & pad_mask # Ensure matching shape
# Add an extra dimension to advantages to match the shape for element - wise multiplication
advantages = advantages.unsqueeze(1)
# Calculate the per - token loss. It takes the minimum of the unclipped and clipped importance weights
# and subtracts the KL divergence term weighted by beta, then multiplies by the completion mask
token_loss = -(torch.min(advantages * importance_weights, advantages *
importance_weights_clipped) - beta * per_token_kl) * completion_mask
# Calculate the final loss by summing the token losses and normalizing by the number of valid tokens
loss = -token_loss.sum() / completion_mask.sum()
return loss
|