File size: 15,383 Bytes
7fdd671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# -*- coding: utf-8 -*-

# https://github.com/huggingface/trl/blob/main/trl/trainer/grpo_trainer.py
"""
# Get the per-token log probabilities for the completions for the model and the reference model
    def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
        # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
        logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
        logits = logits[:, :-1, :]  # (B, L-1, V), exclude the last logit: it corresponds to the next token pred

        input_ids = input_ids[:, -logits_to_keep:]
        # For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
        # See https://github.com/huggingface/trl/issues/2770
        logits = logits[:, -logits_to_keep:]
        return selective_log_softmax(logits, input_ids)  #  compute logprobs for the input tokens

    def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
        if return_outputs:
            raise ValueError("The GRPOTrainer does not support returning outputs")
        # Compute the per-token log probabilities for the model

        prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
        completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
        input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens

        per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)

        # Compute the KL divergence between the model and the reference model
        ref_per_token_logps = inputs["ref_per_token_logps"]
        per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1

        # x - x.detach() allows for preserving gradients from x
        advantages = inputs["advantages"]
        per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
        per_token_loss = -(per_token_loss - self.beta * per_token_kl)
        loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()

        # Log the metrics
        completion_length = self.accelerator.gather_for_metrics(completion_mask.sum(1)).float().mean().item()
        self._metrics["completion_length"].append(completion_length)

        mean_kl = ((per_token_kl * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
        self._metrics["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())

        return loss
"""


import torch
import triton
import triton.language as tl

from fla.ops.utils.op import exp, log
from fla.utils import input_guard


@triton.autotune(
    [triton.Config({'BLOCK_SIZE': BLOCK_SIZE},  num_warps=NUM_WARPS, num_stages=NUM_STAGES)
     for BLOCK_SIZE in [1024, 2048, 4096, 8192]
     for NUM_WARPS in [8, 16, 32]
     for NUM_STAGES in [1, 2, 4]
     ], key=['B', 'N']
)
@triton.jit
def grpo_fwd_kernel(
    logits_ptr,
    ref_logp_ptr,
    input_ids_ptr,
    advantages_ptr,
    completion_mask_ptr,
    loss_ptr,
    lse_ptr,
    beta,
    save_kl: tl.constexpr,
    B,
    M,
    N,
    L,
    start_idx,
    BLOCK_SIZE: tl.constexpr
):
    row_idx = tl.program_id(0)

    off_b = row_idx // L
    N = tl.cast(N, tl.int64)

    loss_ptr += row_idx

    completion_mask_ptr += row_idx
    not_skip = tl.load(completion_mask_ptr).to(tl.int1)
    if not_skip == 1:
        ref_logp_ptr += row_idx
        lse_ptr += row_idx
        advantages_ptr += off_b
        logits_ptr += N * (row_idx + off_b)
        input_ids_ptr += row_idx + (off_b+1) * start_idx
        base_cols = tl.arange(0, BLOCK_SIZE)

        m_i = -float("inf")
        l_i = 0.0
        for start_n in tl.range(0, N, BLOCK_SIZE):
            cols = start_n + base_cols
            mask = cols < N
            logits = tl.load(logits_ptr+cols, mask=mask, other=-float('inf')).to(tl.float32)
            m_ij = tl.max(logits)
            new_m_i = tl.maximum(m_i, m_ij)
            l_i = l_i * exp(m_i - new_m_i) + tl.sum(exp(logits - new_m_i))
            m_i = new_m_i
        lse = log(l_i) + m_i

        idx = tl.load(input_ids_ptr)
        x = tl.load(logits_ptr+idx).to(tl.float32)
        advantage = tl.load(advantages_ptr).to(tl.float32)
        ref_logp = tl.load(ref_logp_ptr)
        logp = x - lse
        diff = ref_logp - logp
        kl = exp(diff) - diff - 1
        loss = kl * beta - advantage

        tl.store(loss_ptr, loss.to(loss_ptr.dtype.element_ty))
        tl.store(lse_ptr, lse.to(lse_ptr.dtype.element_ty))
        if save_kl:
            tl.store(loss_ptr+M, kl.to(loss_ptr.dtype.element_ty))
    else:
        # store 0
        tl.store(loss_ptr, 0.0)
        if save_kl:
            tl.store(loss_ptr+M, 0.0)


@triton.autotune(
    [triton.Config({'BLOCK_SIZE': BLOCK_SIZE},  num_warps=NUM_WARPS, num_stages=NUM_STAGES)
     for BLOCK_SIZE in [1024, 2048, 4096, 8192]
     for NUM_WARPS in [8, 16, 32]
     for NUM_STAGES in [1, 2, 4]
     ], key=['B', 'N']
)
@triton.jit
def grpo_bwd_kernel(
    dloss_ptr,
    dlogits_ptr,
    logits_ptr,
    ref_logp_ptr,
    input_ids_ptr,
    advantages_ptr,
    completion_mask_ptr,
    lse_ptr,
    beta,
    B,
    N,
    L,
    start_idx,
    BLOCK_SIZE: tl.constexpr
):

    row_idx = tl.program_id(0)  # B*L
    off_b = row_idx // L

    N = tl.cast(N, tl.int64)

    dlogits_ptr += N * (row_idx + off_b)
    base_cols = tl.arange(0, BLOCK_SIZE)
    completion_mask_ptr += row_idx
    not_skip = tl.load(completion_mask_ptr).to(tl.int1)

    if not_skip == 1:
        lse_ptr += row_idx
        dloss_ptr += row_idx
        advantages_ptr += off_b
        ref_logp_ptr += row_idx
        logits_ptr += N * (row_idx + off_b)
        input_ids_ptr += row_idx + (off_b+1) * start_idx
        dloss = tl.load(dloss_ptr).to(tl.float32)
        lse = tl.load(lse_ptr).to(tl.float32)
        idx = tl.load(input_ids_ptr)
        x = tl.load(logits_ptr+idx).to(tl.float32)
        advantage = tl.load(advantages_ptr).to(tl.float32)
        ref_logp = tl.load(ref_logp_ptr)
        logp = x - lse

        dlogp = (beta * (-1.0 * exp(ref_logp - logp) + 1)
                 - advantage) * dloss

        for start_n in tl.range(0, N, BLOCK_SIZE):
            cols = start_n + base_cols
            mask = cols < N
            logits = tl.load(logits_ptr+cols, mask=mask, other=-float('inf')).to(tl.float32)
            probs = exp(logits - lse)
            dlogits = tl.where(cols == idx, 1-probs, -probs) * dlogp

            tl.store(dlogits_ptr+cols, dlogits.to(dlogits_ptr.dtype.element_ty), mask=mask)
    else:
        dlogits = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
        for start_n in tl.range(0, N, BLOCK_SIZE):
            cols = start_n + base_cols
            mask = cols < N

            tl.store(dlogits_ptr+cols, dlogits.to(dlogits_ptr.dtype.element_ty), mask=mask)


class GrpoLoss(torch.autograd.Function):

    @input_guard
    @staticmethod
    def forward(ctx, logits, ref_logp, input_ids, advantages, beta, completion_mask, save_kl):
        ctx.input_shape = logits.shape
        B, L_ADD_1, N = ctx.input_shape
        L = L_ADD_1 - 1
        M = B * L
        input_ids_start_index = input_ids.size(1) - L

        if not save_kl:
            loss = torch.empty(B, L, device=logits.device, dtype=torch.float32)
        else:
            loss = torch.empty(B*2, L, device=logits.device, dtype=torch.float32)

        lse = torch.empty(B, L, device=logits.device, dtype=torch.float32)

        if completion_mask is None:
            completion_mask = torch.ones(B, L, device=logits.device, dtype=torch.int32)
        else:
            loss[:B].masked_fill_(completion_mask.logical_not(), 0.0)

        grpo_fwd_kernel[(M,)](
            logits_ptr=logits,
            ref_logp_ptr=ref_logp,
            input_ids_ptr=input_ids,
            advantages_ptr=advantages,
            completion_mask_ptr=completion_mask,
            loss_ptr=loss,
            lse_ptr=lse,
            beta=beta,
            save_kl=save_kl,
            B=B, M=M, N=N, L=L,
            start_idx=input_ids_start_index,
        )
        ctx.beta = beta
        ctx.save_for_backward(lse, logits, input_ids, advantages, completion_mask)
        ctx.ref_logp = ref_logp
        return loss

    @input_guard
    @staticmethod
    def backward(ctx, dloss):
        # The grad of logits comes from two parts, the reward part and the kl part
        lse, logits, input_ids, advantages, completion_mask = ctx.saved_tensors
        B, L_ADD_1, N = ctx.input_shape
        L = L_ADD_1 - 1
        M = B * L

        input_ids_start_index = input_ids.size(1) - L

        dlogits = torch.empty_like(logits)  # B, L_ADD_1, N

        grpo_bwd_kernel[(M,)](
            dloss_ptr=dloss,
            dlogits_ptr=dlogits,
            logits_ptr=logits,
            ref_logp_ptr=ctx.ref_logp,
            input_ids_ptr=input_ids,
            advantages_ptr=advantages,
            completion_mask_ptr=completion_mask,
            lse_ptr=lse,
            beta=ctx.beta,
            B=B, N=N, L=L,
            start_idx=input_ids_start_index,
        )
        # The last token in the completion is not used in the loss computation
        # and therefore its gradient should be set to 0
        dlogits[:, -1, :].fill_(0.0)
        return dlogits.view(*ctx.input_shape), None, None, None, None, None, None


def fused_grpo_loss(logits, ref_logp, input_ids, advantages, beta=0.1, completion_mask=None, save_kl=False) -> torch.Tensor:
    '''
    compute grpo loss, save memory(no addition usage) and fast speed(6X for A800)

    Args:
        logtits: Tensor, [B, L+1, vocab_size], the origin output of model, it's not logits[:, :-1]
        ref_logp: Tensor, [B, L], the origin output of model, it's not ref_logits[:, :-1]
        input_ids: Tensor, [B, K+L], it's prompt_completion_id, it contains the prompt ids and output ids
        advantages: Tensor, [B], the advantages of each prompt
        beta: float, the weight of kl loss
        completion_mask: Tensor, loss mask
        save_kl: bool, if true will save kl

    Retutn:
        loss: Tensor, [B, L], the loss of grpo, it contains the advantage part and kl part

    NOTE: logits(ref_logits) is computed by these steps
        logits_to_keep = completion_ids.size(1)

        def get_per_token_logits(model, input_ids, attention_mask, logits_to_keep):
            # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
            logits = model(
                input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1
            ).logits
            return logits

        logits = get_per_token_logits(model, prompt_completion_ids, attention_mask, logits_to_keep)
    '''
    out = GrpoLoss.apply(logits, ref_logp, input_ids, advantages, beta, completion_mask, save_kl)
    if not save_kl:
        return out
    else:
        return out.chunk(2, axis=0)


def grpo_loss_torch(logits, ref_logp, input_ids, advantages, beta=0.1, completion_mask=None, save_kl=False):
    def get_log_probs(logits, input_ids):
        per_token_logps = []
        for logits_row, input_ids_row in zip(logits, input_ids[:, -logits.size(1):]):
            log_probs = logits_row.log_softmax(dim=-1)
            token_log_prob = torch.gather(log_probs, dim=1, index=input_ids_row.unsqueeze(1)).squeeze(1)
            per_token_logps.append(token_log_prob)
        return torch.stack(per_token_logps)

    logits = logits[:, :-1]
    per_token_logps = get_log_probs(logits, input_ids)
    ref_per_token_logps = ref_logp
    per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1

    per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
    per_token_loss = -(per_token_loss - beta * per_token_kl)
    if completion_mask is not None:
        per_token_loss *= completion_mask
        if save_kl:
            per_token_kl *= completion_mask
    return per_token_loss if not save_kl else (per_token_loss, per_token_kl)


@torch.compile(fullgraph=True)
def grpo_loss_with_old_logps(
    logps: torch.Tensor,
    ref_logps: torch.Tensor,
    old_logps: torch.Tensor,
    pad_mask: torch.Tensor,
    logits_to_keep: int,
    rewards: torch.Tensor,
    beta: float = 0.2,
    epsilon: float = 0.2
):
    """
    Compute the GRPO (Group Relative Policy Optimization) loss.

    Args:
        logps (torch.Tensor): [Batch, Token_length] Log probabilities of the current policy.
        ref_logps (torch.Tensor):[Batch, Token_length]  Log probabilities of the reference policy.
        old_logps (torch.Tensor): [Batch, Token_length] Log probabilities of the old policy.
        completion_ids (torch.Tensor): [Batch, Token_length] Completion token IDs (bool).
        pad_token_id: Pad token ID.
        logits_to_keep (int): Number of logits to keep for masking.
        rewards (torch.Tensor): [Batch] Rewards for each generation.
        beta (float) = 0.2: A hyperparameter for weighting the KL divergence term.
        epsilon (float) = 0.2: An float hyperparameter for clipping the importance weights.

    Returns:
        torch.Tensor: The computed GRPO loss.
    """
    B = logps.shape[0]
    assert B > 1, "Batch * Num generations should be greater than 1"

    rewards_shaped = rewards.view(-1, B)  # B,num_generations
    advantages = (rewards_shaped - rewards_shaped.mean(dim=1, keepdim=True)) / \
        (rewards_shaped.std(dim=1, keepdim=True) + 1e-8)
    advantages = advantages.view(-1)  # B*num_generations
    # Calculate the per - token KL divergence
    per_token_kl = torch.exp(ref_logps - logps) - (ref_logps - logps) - 1

    # Calculate the ratio of probabilities (importance weights)
    # Importance weights are calculated as exp(log_pi_theta - log_pi_theta_old)
    importance_weights = torch.exp(logps - old_logps)

    # Clip the importance weights to the range [1 - epsilon, 1 + epsilon]
    importance_weights_clipped = torch.clamp(importance_weights, 1 - epsilon, 1 + epsilon)

    # Create a completion mask. It checks which positions are valid based on logits_to_keep
    completion_mask = torch.arange(logits_to_keep, device=logps.device)[None, :] >= 0

    # Combine the completion mask and padding mask
    completion_mask = completion_mask & pad_mask  # Ensure matching shape

    # Add an extra dimension to advantages to match the shape for element - wise multiplication
    advantages = advantages.unsqueeze(1)

    # Calculate the per - token loss. It takes the minimum of the unclipped and clipped importance weights
    # and subtracts the KL divergence term weighted by beta, then multiplies by the completion mask
    token_loss = -(torch.min(advantages * importance_weights, advantages *
                   importance_weights_clipped) - beta * per_token_kl) * completion_mask

    # Calculate the final loss by summing the token losses and normalizing by the number of valid tokens
    loss = -token_loss.sum() / completion_mask.sum()

    return loss