File size: 2,415 Bytes
dc51e4a f593f7e dc51e4a f593f7e dc51e4a f593f7e dc51e4a f593f7e dc51e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: roberta-base-Roberta-Model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-Roberta-Model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7350
- F1: 0.6663
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8512 | 0.5 | 500 | 0.7909 | 0.6405 |
| 0.7992 | 1.0 | 1000 | 0.8753 | 0.6407 |
| 0.7667 | 1.5 | 1500 | 0.7786 | 0.6428 |
| 0.7583 | 2.01 | 2000 | 0.7407 | 0.6593 |
| 0.7415 | 2.51 | 2500 | 0.7564 | 0.6555 |
| 0.7337 | 3.01 | 3000 | 0.7536 | 0.6526 |
| 0.7224 | 3.51 | 3500 | 0.7777 | 0.6126 |
| 0.7067 | 4.01 | 4000 | 0.7790 | 0.6552 |
| 0.6693 | 4.51 | 4500 | 0.7497 | 0.6665 |
| 0.6744 | 5.02 | 5000 | 0.7350 | 0.6663 |
| 0.6546 | 5.52 | 5500 | 0.7865 | 0.6714 |
| 0.6725 | 6.02 | 6000 | 0.7639 | 0.6721 |
| 0.6361 | 6.52 | 6500 | 0.7780 | 0.6917 |
| 0.6268 | 7.02 | 7000 | 0.7905 | 0.6893 |
| 0.619 | 7.52 | 7500 | 0.7644 | 0.6991 |
| 0.6008 | 8.02 | 8000 | 0.7473 | 0.7086 |
| 0.5824 | 8.53 | 8500 | 0.7601 | 0.7009 |
| 0.5687 | 9.03 | 9000 | 0.7795 | 0.6888 |
| 0.5466 | 9.53 | 9500 | 0.7925 | 0.7045 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|