File size: 1,811 Bytes
96fe658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import math
import unittest

import torch
from modelscope import Model, Preprocessor
from torch import nn

from swift import LoRAConfig, Swift


class TestMergedLinear(unittest.TestCase):

    def test_swift_lora_forward(self):

        from swift.tuners.lora import MergedLinear

        def reset_parameters(self):
            nn.Linear.reset_parameters(self)
            if hasattr(self, 'lora_A'):
                # initialize A the same way as the default for nn.Linear and B to zero
                nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
                nn.init.ones_(self.lora_B)

        MergedLinear.reset_parameters = reset_parameters

        model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
        preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
        inputs = preprocessor('how are you')
        lora_config = LoRAConfig(
            target_modules=['query', 'key', 'value'], use_merged_linear=True, enable_lora=[True, True, True])
        outputs = model(**inputs)
        model = Swift.prepare_model(model, config=lora_config)
        model.eval()
        outputs_lora = model(**inputs)
        model.deactivate_adapter('default')
        outputs_deactivate = model(**inputs)
        model.activate_adapter('default')
        outputs_reactivate = model(**inputs)
        Swift.merge_and_unload(model)
        outputs_merged = model(**inputs)
        self.assertTrue(torch.allclose(outputs.logits, outputs_deactivate.logits))
        self.assertTrue(not torch.allclose(outputs.logits, outputs_lora.logits))
        self.assertTrue(torch.allclose(outputs_lora.logits, outputs_reactivate.logits))
        self.assertTrue(torch.allclose(outputs_lora.logits, outputs_merged.logits, atol=1e-4))