File size: 2,151 Bytes
96fe658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

kwargs = {
    'per_device_train_batch_size': 2,
    'save_steps': 50,
    'gradient_accumulation_steps': 4,
    'num_train_epochs': 3,
}


def test_llm():
    from swift.llm import sft_main, TrainArguments, infer_main, InferArguments
    result = sft_main(
        TrainArguments(
            model='Qwen/Qwen2-7B-Instruct',
            dataset=['AI-ModelScope/alpaca-gpt4-data-zh#1000', 'swift/self-cognition#1000'],
            split_dataset_ratio=0.01,
            packing=True,
            max_length=4096,
            attn_impl='flash_attn',
            logging_steps=1,
            **kwargs))
    last_model_checkpoint = result['last_model_checkpoint']
    infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True))


def test_streaming():
    from swift.llm import sft_main, TrainArguments, infer_main, InferArguments
    result = sft_main(
        TrainArguments(
            model='Qwen/Qwen2-7B-Instruct',
            dataset=['AI-ModelScope/alpaca-gpt4-data-zh#10000'],
            packing=True,
            max_length=4096,
            streaming=True,
            attn_impl='flash_attn',
            max_steps=100,
            dataset_num_proc=1,
            **kwargs))
    last_model_checkpoint = result['last_model_checkpoint']
    infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True))


def test_mllm_streaming():
    from swift.llm import sft_main, TrainArguments, infer_main, InferArguments
    result = sft_main(
        TrainArguments(
            model='Qwen/Qwen2.5-VL-7B-Instruct',
            dataset=['AI-ModelScope/LaTeX_OCR#20000'],
            packing=True,
            max_length=8192,
            streaming=True,
            attn_impl='flash_attn',
            max_steps=100,
            dataset_num_proc=4,
            **kwargs))
    last_model_checkpoint = result['last_model_checkpoint']
    infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True))


if __name__ == '__main__':
    # test_llm()
    # test_streaming()
    test_mllm_streaming()