File size: 11,496 Bytes
96fe658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
#!/usr/bin/env python
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import os
import pickle
import shutil
import socket
import subprocess
import sys
import tarfile
import tempfile
import unittest
from collections import OrderedDict
from collections.abc import Mapping
from os.path import expanduser
import numpy as np
import requests
from modelscope.hub.constants import DEFAULT_CREDENTIALS_PATH
TEST_LEVEL = 2
TEST_LEVEL_STR = 'TEST_LEVEL'
# for user citest and sdkdev
TEST_ACCESS_TOKEN1 = os.environ.get('TEST_ACCESS_TOKEN_CITEST', None)
TEST_ACCESS_TOKEN2 = os.environ.get('TEST_ACCESS_TOKEN_SDKDEV', None)
TEST_MODEL_CHINESE_NAME = '内部测试模型'
TEST_MODEL_ORG = 'citest'
def delete_credential():
path_credential = expanduser(DEFAULT_CREDENTIALS_PATH)
shutil.rmtree(path_credential, ignore_errors=True)
def test_level():
global TEST_LEVEL
if TEST_LEVEL_STR in os.environ:
TEST_LEVEL = int(os.environ[TEST_LEVEL_STR])
return TEST_LEVEL
def require_tf(test_case):
test_case = unittest.skip('test requires TensorFlow')(test_case)
return test_case
def require_torch(test_case):
return test_case
def set_test_level(level: int):
global TEST_LEVEL
TEST_LEVEL = level
class DummyTorchDataset:
def __init__(self, feat, label, num) -> None:
self.feat = feat
self.label = label
self.num = num
def __getitem__(self, index):
import torch
return {'feat': torch.Tensor(self.feat), 'labels': torch.Tensor(self.label)}
def __len__(self):
return self.num
def create_dummy_test_dataset(feat, label, num):
return DummyTorchDataset(feat, label, num)
def download_and_untar(fpath, furl, dst) -> str:
if not os.path.exists(fpath):
r = requests.get(furl)
with open(fpath, 'wb') as f:
f.write(r.content)
file_name = os.path.basename(fpath)
root_dir = os.path.dirname(fpath)
target_dir_name = os.path.splitext(os.path.splitext(file_name)[0])[0]
target_dir_path = os.path.join(root_dir, target_dir_name)
# untar the file
t = tarfile.open(fpath)
t.extractall(path=dst)
return target_dir_path
def get_case_model_info():
status_code, result = subprocess.getstatusoutput(
'grep -rn "damo/" tests/ | grep -v ".pyc" | grep -v "Binary file" | grep -v run.py ')
lines = result.split('\n')
test_cases = OrderedDict()
model_cases = OrderedDict()
for line in lines:
# "tests/msdatasets/test_ms_dataset.py:92: model_id = 'damo/bert-base-sst2'"
line = line.strip()
elements = line.split(':')
test_file = elements[0]
model_pos = line.find('damo')
left_quote = line[model_pos - 1]
rquote_idx = line.rfind(left_quote)
model_name = line[model_pos:rquote_idx]
if test_file not in test_cases:
test_cases[test_file] = set()
model_info = test_cases[test_file]
model_info.add(model_name)
if model_name not in model_cases:
model_cases[model_name] = set()
case_info = model_cases[model_name]
case_info.add(test_file.replace('tests/', '').replace('.py', '').replace('/', '.'))
return model_cases
def compare_arguments_nested(print_content, arg1, arg2, rtol=1.e-3, atol=1.e-8, ignore_unknown_type=True):
type1 = type(arg1)
type2 = type(arg2)
if type1.__name__ != type2.__name__:
if print_content is not None:
print(f'{print_content}, type not equal:{type1.__name__} and {type2.__name__}')
return False
if arg1 is None:
return True
elif isinstance(arg1, (int, str, bool, np.bool_, np.integer, np.str_)):
if arg1 != arg2:
if print_content is not None:
print(f'{print_content}, arg1:{arg1}, arg2:{arg2}')
return False
return True
elif isinstance(arg1, (float, np.floating)):
if not np.isclose(arg1, arg2, rtol=rtol, atol=atol, equal_nan=True):
if print_content is not None:
print(f'{print_content}, arg1:{arg1}, arg2:{arg2}')
return False
return True
elif isinstance(arg1, (tuple, list)):
if len(arg1) != len(arg2):
if print_content is not None:
print(f'{print_content}, length is not equal:{len(arg1)}, {len(arg2)}')
return False
if not all([
compare_arguments_nested(None, sub_arg1, sub_arg2, rtol=rtol, atol=atol)
for sub_arg1, sub_arg2 in zip(arg1, arg2)
]):
if print_content is not None:
print(f'{print_content}')
return False
return True
elif isinstance(arg1, Mapping):
keys1 = arg1.keys()
keys2 = arg2.keys()
if len(keys1) != len(keys2):
if print_content is not None:
print(f'{print_content}, key length is not equal:{len(keys1)}, {len(keys2)}')
return False
if len(set(keys1) - set(keys2)) > 0:
if print_content is not None:
print(f'{print_content}, key diff:{set(keys1) - set(keys2)}')
return False
if not all([compare_arguments_nested(None, arg1[key], arg2[key], rtol=rtol, atol=atol) for key in keys1]):
if print_content is not None:
print(f'{print_content}')
return False
return True
elif isinstance(arg1, np.ndarray):
arg1 = np.where(np.equal(arg1, None), np.NaN, arg1).astype(dtype=float)
arg2 = np.where(np.equal(arg2, None), np.NaN, arg2).astype(dtype=float)
if not all(np.isclose(arg1, arg2, rtol=rtol, atol=atol, equal_nan=True).flatten()):
if print_content is not None:
print(f'{print_content}')
return False
return True
else:
if ignore_unknown_type:
return True
else:
raise ValueError(f'type not supported: {type1}')
_DIST_SCRIPT_TEMPLATE = """
import ast
import argparse
import pickle
import torch
from torch import distributed as dist
from modelscope.utils.torch_utils import get_dist_info
import {}
parser = argparse.ArgumentParser()
parser.add_argument('--save_all_ranks', type=ast.literal_eval, help='save all ranks results')
parser.add_argument('--save_file', type=str, help='save file')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
def main():
results = {}.{}({}) # module.func(params)
if args.save_all_ranks:
save_file = args.save_file + str(dist.get_rank())
with open(save_file, 'wb') as f:
pickle.dump(results, f)
else:
rank, _ = get_dist_info()
if rank == 0:
with open(args.save_file, 'wb') as f:
pickle.dump(results, f)
if __name__ == '__main__':
main()
"""
class DistributedTestCase(unittest.TestCase):
"""Distributed TestCase for test function with distributed mode.
Examples:
>>> import torch
>>> from torch import distributed as dist
>>> from modelscope.utils.torch_utils import init_dist
>>> def _test_func(*args, **kwargs):
>>> init_dist(launcher='pytorch')
>>> rank = dist.get_rank()
>>> if rank == 0:
>>> value = torch.tensor(1.0).cuda()
>>> else:
>>> value = torch.tensor(2.0).cuda()
>>> dist.all_reduce(value)
>>> return value.cpu().numpy()
>>> class DistTest(DistributedTestCase):
>>> def test_function_dist(self):
>>> args = () # args should be python builtin type
>>> kwargs = {} # kwargs should be python builtin type
>>> self.start(
>>> _test_func,
>>> num_gpus=2,
>>> assert_callback=lambda x: self.assertEqual(x, 3.0),
>>> *args,
>>> **kwargs,
>>> )
"""
def _start(self, dist_start_cmd, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs):
script_path = func.__code__.co_filename
script_dir, script_name = os.path.split(script_path)
script_name = os.path.splitext(script_name)[0]
func_name = func.__qualname__
func_params = []
for arg in args:
if isinstance(arg, str):
arg = ('\'{}\''.format(arg))
func_params.append(str(arg))
for k, v in kwargs.items():
if isinstance(v, str):
v = ('\'{}\''.format(v))
func_params.append('{}={}'.format(k, v))
func_params = ','.join(func_params).strip(',')
tmp_run_file = tempfile.NamedTemporaryFile(suffix='.py').name
tmp_res_file = tempfile.NamedTemporaryFile(suffix='.pkl').name
with open(tmp_run_file, 'w') as f:
print('save temporary run file to : {}'.format(tmp_run_file))
print('save results to : {}'.format(tmp_res_file))
run_file_content = _DIST_SCRIPT_TEMPLATE.format(script_name, script_name, func_name, func_params)
f.write(run_file_content)
tmp_res_files = []
if save_all_ranks:
for i in range(num_gpus):
tmp_res_files.append(tmp_res_file + str(i))
else:
tmp_res_files = [tmp_res_file]
self.addCleanup(self.clean_tmp, [tmp_run_file] + tmp_res_files)
tmp_env = copy.deepcopy(os.environ)
tmp_env['PYTHONPATH'] = ':'.join((tmp_env.get('PYTHONPATH', ''), script_dir)).lstrip(':')
# avoid distributed test hang
tmp_env['NCCL_P2P_DISABLE'] = '1'
script_params = '--save_all_ranks=%s --save_file=%s' % (save_all_ranks, tmp_res_file)
script_cmd = '%s %s %s' % (dist_start_cmd, tmp_run_file, script_params)
print('script command: %s' % script_cmd)
res = subprocess.call(script_cmd, shell=True, env=tmp_env)
script_res = []
for res_file in tmp_res_files:
with open(res_file, 'rb') as f:
script_res.append(pickle.load(f))
if not save_all_ranks:
script_res = script_res[0]
if assert_callback:
assert_callback(script_res)
self.assertEqual(res, 0, msg='The test function ``{}`` in ``{}`` run failed!'.format(func_name, script_name))
return script_res
def start(self, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs):
from .torch_utils import _find_free_port
ip = socket.gethostbyname(socket.gethostname())
if 'dist_start_cmd' in kwargs:
dist_start_cmd = kwargs.pop('dist_start_cmd')
else:
dist_start_cmd = '%s -m torch.distributed.launch --nproc_per_node=%d ' \
'--master_addr=\'%s\' --master_port=%s' % (sys.executable, num_gpus, ip, _find_free_port())
return self._start(
dist_start_cmd=dist_start_cmd,
func=func,
num_gpus=num_gpus,
assert_callback=assert_callback,
save_all_ranks=save_all_ranks,
*args,
**kwargs)
def clean_tmp(self, tmp_file_list):
for file in tmp_file_list:
if os.path.exists(file):
if os.path.isdir(file):
shutil.rmtree(file)
else:
os.remove(file)
|