File size: 12,682 Bytes
96fe658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) Alibaba, Inc. and its affiliates.
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from swift.utils.logger import get_logger

logger = get_logger()


class ResTuner(nn.Module):

    def __init__(self, dim=None, layer_num=-1, depth=-1, zero_init_last=False, stage='', tuner_cfg={}, **kwargs):
        super().__init__()
        self.dim = dim
        self.layer_num = layer_num
        self.depth = depth
        self.stage = stage
        self.tuner_cfg = tuner_cfg

        if (isinstance(tuner_cfg, str) and tuner_cfg == 'res_adapter') or \
                (isinstance(tuner_cfg, dict) and 'res_adapter' in tuner_cfg):
            tuner_cfg = tuner_cfg['res_adapter'] if isinstance(tuner_cfg, dict) else tuner_cfg
            self.tuner = ResAdapter(
                dim=dim,
                layer_num=layer_num,
                depth=depth,
                zero_init_last=zero_init_last,
                stage=stage,
                tuner_cfg=tuner_cfg,
                **kwargs)
        elif (isinstance(tuner_cfg, str) and tuner_cfg == 'res_group_adapter') or \
                (isinstance(tuner_cfg, dict) and 'res_group_adapter' in tuner_cfg):
            tuner_cfg = tuner_cfg['res_group_adapter'] if isinstance(tuner_cfg, dict) else tuner_cfg
            self.tuner = ResGroupAdapter(
                dim=dim,
                layer_num=layer_num,
                depth=depth,
                zero_init_last=zero_init_last,
                stage=stage,
                tuner_cfg=tuner_cfg,
                **kwargs)
        elif (isinstance(tuner_cfg, str) and tuner_cfg == 'upsample') or \
                (isinstance(tuner_cfg, dict) and 'upsample' in tuner_cfg):
            tuner_cfg = tuner_cfg['upsample'] if isinstance(tuner_cfg, dict) else tuner_cfg
            if 'upsample_out_channels' in kwargs:
                out_channels = kwargs['upsample_out_channels']
                use_conv = True if out_channels else False
            else:
                out_channels = dim
                use_conv = False
            self.tuner = Upsample(
                channels=dim, use_conv=use_conv, out_channels=out_channels, tuner_cfg=tuner_cfg, **kwargs)
        else:
            self.tuner = Identity()

    def forward(self, x, *args, **kwargs):
        if self.tuner_cfg == 'zero' or 'zero' in self.tuner_cfg:
            x_out = 0.0
        else:
            x_out = self.tuner(x, *args, **kwargs)
        return x_out


class ResAdapter(nn.Module):

    def __init__(self,
                 dim,
                 layer_num=-1,
                 depth=-1,
                 zero_init_last=False,
                 stage='',
                 tuner_cfg=None,
                 act_layer=nn.GELU,
                 **kwargs):
        super(ResAdapter, self).__init__()
        self.dim = dim
        self.layer_num = layer_num
        self.depth = depth

        self.adapter_length = tuner_cfg['adapter_length'] if 'adapter_length' in tuner_cfg else 32
        self.adapter_type = tuner_cfg['adapter_type'] if 'adapter_type' in tuner_cfg else None
        self.adapter_weight = tuner_cfg['adapter_weight'] if 'adapter_weight' in tuner_cfg else None

        self.adapter_length = self.adapter_length[self.layer_num] if isinstance(self.adapter_length,
                                                                                list) else self.adapter_length
        assert isinstance(self.adapter_length, int) or (isinstance(self.adapter_length, tuple)
                                                        and len(self.adapter_length) == 3)
        if isinstance(self.adapter_length, int):
            self.ln1 = nn.Linear(dim, self.adapter_length)
        else:
            self.ln1 = nn.Linear(self.adapter_length[0], self.adapter_length[1])
        self.activate = act_layer()
        if isinstance(self.adapter_length, int):
            self.ln2 = nn.Linear(self.adapter_length, dim)
        else:
            self.ln2 = nn.Linear(self.adapter_length[1], self.adapter_length[2])
            dim = self.adapter_length[2]

        self._xavier_init_weights(self.ln1)
        if zero_init_last and layer_num == depth - 1:
            self._zero_init_weights(self.ln2)
        else:
            self._xavier_init_weights(self.ln2)

        self.scaling = init_weight_type(dim, self.adapter_weight)
        self._prepared = False

    def _zero_init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.zeros_(m.weight)
            nn.init.zeros_(m.bias)

    def _kaiming_init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5))
            nn.init.normal_(m.bias)

    def _xavier_init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            nn.init.normal_(m.bias, std=1e-6)

    def forward(self, x):
        if not self._prepared:
            self.ln1.to(x.device)
            self.activate.to(x.device)
            self.ln2.to(x.device)
            self._prepared = True

        x_dtype = x.dtype
        x = x.to(self.ln1.weight.dtype)
        x_shortcut = x
        if len(x_shortcut.size()) == 4:
            B, C, N1, N2 = x.size()
            x = x.view(x_shortcut.size()[0], x_shortcut.size()[1], -1).permute(0, 2, 1)

        x_adapter = self.ln2(self.activate(self.ln1(x)))

        if self.adapter_weight:
            x_adapter = apply_data_weight(x_adapter, self.scaling, self.adapter_weight)

        if len(x_shortcut.size()) == 4:
            x_adapter = x_adapter.permute(0, 2, 1).view(x_shortcut.size()[0],
                                                        x_adapter.size()[-1],
                                                        x_shortcut.size()[2],
                                                        x_shortcut.size()[3])
        x_out = x_shortcut + x_adapter
        return x_out.to(x_dtype)


class ResGroupAdapter(nn.Module):

    def __init__(self,
                 dim,
                 layer_num=-1,
                 depth=-1,
                 zero_init_last=False,
                 stage='',
                 tuner_cfg=None,
                 act_layer=nn.GELU,
                 **kwargs):
        super(ResGroupAdapter, self).__init__()
        self.dim = dim
        self.layer_num = layer_num
        self.depth = depth

        self.adapter_type = tuner_cfg['adapter_type'] if 'adapter_type' in tuner_cfg else None
        self.adapter_weight = tuner_cfg['adapter_weight'] if 'adapter_weight' in tuner_cfg else None

        self.adapter_dim = tuner_cfg['dim'] if 'dim' in tuner_cfg else dim
        self.adapter_head = tuner_cfg['head'] if 'head' in tuner_cfg else 4
        self.adapter_scale_factor = tuner_cfg['scale_factor'] if 'scale_factor' in tuner_cfg else 2

        assert self.adapter_dim % self.adapter_head == 0, 'adapter dim should be divisible by adapter head'
        self.dim_mlp = self.adapter_dim // self.adapter_head

        self.ln1 = nn.Linear(self.dim_mlp, self.dim_mlp * self.adapter_scale_factor)
        self.ln2 = nn.Linear(self.dim_mlp * self.adapter_scale_factor, self.dim_mlp)
        self.activate = act_layer()

        self._kaiming_init_weights(self.ln1)
        if zero_init_last and layer_num == depth - 1:
            self._zero_init_weights(self.ln2)
        else:
            self._kaiming_init_weights(self.ln2)
        self.scaling = init_weight_type(dim, self.adapter_weight)
        self._prepared = False

    def _zero_init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.zeros_(m.weight)
            nn.init.zeros_(m.bias)

    def _kaiming_init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5))
            nn.init.normal_(m.bias)

    def _xavier_init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            nn.init.normal_(m.bias, std=1e-6)

    def forward(self, x):
        if not self._prepared:
            self.ln1.to(x.device)
            self.activate.to(x.device)
            self.ln2.to(x.device)
            self._prepared = True

        x_dtype = x.dtype
        x = x.to(self.ln1.weight.dtype)
        x_shortcut = x

        batch, inner_dim, height, width = x.shape

        x_adapter = x.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)

        x_adapter = rearrange(x_adapter, 'b n (c h) -> (b h) n c', h=self.adapter_head)
        x_adapter = self.ln2(self.activate(self.ln1(x_adapter)))
        x_adapter = rearrange(x_adapter, '(b h) n c -> b n (c h)', h=self.adapter_head)

        if self.adapter_weight:
            x_adapter = apply_data_weight(x_adapter, self.scaling, self.adapter_weight)

        x_adapter = x_adapter.reshape(batch, height, width, -1).permute(0, 3, 1, 2).contiguous()
        x_out = x_shortcut + x_adapter

        return x_out.to(x_dtype)


class Identity(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, inputs, *args, **kwargs):
        return inputs


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, **kwargs):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        if use_conv:
            self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=padding)
        self.init_weights()

    def init_weights(self):

        def _init_weights(m):
            if isinstance(m, nn.Conv2d):
                nn.init.zeros_(m.weight)
                nn.init.zeros_(m.bias)

        self.apply(_init_weights)

    def forward(self, x, target_size=None, *args, **kwargs):
        assert x.shape[1] == self.channels
        if target_size is None:
            x = F.interpolate(x.float(), scale_factor=2, mode='nearest').type_as(x)
        else:
            x = F.interpolate(x.float(), target_size, mode='nearest').type_as(x)
        if self.use_conv:
            x = self.conv(x)
        return x


def init_weight_type(dim, weight_type):
    if weight_type is None:
        scaling = None
    elif weight_type == 'gate':
        scaling = nn.Linear(dim, 1)
    elif weight_type == 'scale':
        scaling = nn.Parameter(torch.Tensor(1))
        scaling.data.fill_(1)
    elif weight_type == 'scale_kv':
        scaling_k = nn.Parameter(torch.Tensor(1))
        scaling_k.data.fill_(1)
        scaling_v = nn.Parameter(torch.Tensor(1))
        scaling_v.data.fill_(1)
        scaling = (scaling_k, scaling_v)
    elif weight_type == 'scale_channel':
        scaling = nn.Parameter(torch.Tensor(dim))
        scaling.data.fill_(1)
    elif weight_type == 'scale_kv_channel':
        scaling_k = nn.Parameter(torch.Tensor(dim))
        scaling_k.data.fill_(1)
        scaling_v = nn.Parameter(torch.Tensor(dim))
        scaling_v.data.fill_(1)
        scaling = (scaling_k, scaling_v)
    elif weight_type and weight_type.startswith('scalar'):
        scaling = float(weight_type.split('_')[-1])
    else:
        scaling = None
    return scaling


def apply_data_weight(data, scaling, weight_type):
    if weight_type in ['gate']:
        scaling = torch.mean(torch.sigmoid(scaling(data)), dim=1).view(-1, 1, 1)
    elif weight_type in ['scale', 'scale_channel'] or weight_type.startswith('scalar'):
        scaling = scaling
    else:
        scaling = None
    if scaling is not None:
        data = data * scaling
    return data


def detach_tensors(feats):
    if type(feats) in [list, tuple]:
        feats = [detach_tensors(feat) if feat is not None else None for feat in feats]
    elif isinstance(feats, dict):
        feats = {key: detach_tensors(val) for key, val in feats.items()}
    elif isinstance(feats, torch.Tensor):
        feats = feats.detach()
    else:
        feats = feats.detach()
    return feats


def probe_tensors(module, feats, name):
    feats = detach_tensors(feats)
    setattr(module, name, feats)


def probe_input_pre_hook(self, args):
    input = args[0]
    probe_tensors(self, input, 'probe_input_data')
    return args


def probe_output_hook(self, args, result):
    output = result
    probe_tensors(self, output, 'probe_output_data')
    return output