File size: 15,776 Bytes
96fe658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright 2023-present the HuggingFace Inc. team.
import os.path
from dataclasses import asdict, dataclass, field
from functools import partial, reduce
from types import MethodType
from typing import Dict, Optional

import json
import peft
import torch
import torch.nn
import transformers
from modelscope import snapshot_download
from peft import (AdaLoraConfig, BOFTConfig, BOFTModel, LoftQConfig, LoHaConfig, LoKrConfig, LoraModel, OFTConfig,
                  PeftConfig, PeftModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM,
                  PeftModelForSequenceClassification, PeftModelForTokenClassification, PrefixTuningConfig,
                  PromptEncoderConfig, PromptLearningConfig, PromptTuningConfig, VeraConfig, VeraModel, get_peft_config,
                  get_peft_model, get_peft_model_state_dict)
from peft.config import PeftConfigMixin
from peft.tuners import lora
from peft.tuners.adalora import AdaLoraModel, RankAllocator
from peft.tuners.lora import Embedding
from transformers import Trainer

from swift.utils import get_logger

try:
    from peft import FourierFTModel
except ImportError:
    FourierFTModel = None

try:
    from peft import BoneModel
except ImportError:
    BoneModel = None

logger = get_logger()
dispatchers = []


@dataclass
class LoraConfig(peft.LoraConfig):
    lora_dtype: Optional[str] = field(
        default=None, metadata={'help': 'The lora dtype, default None means following the original layer\'s dtype'})

    lorap_lr_ratio: Optional[float] = field(default=None, metadata={'help': 'The lr ratio of lora_B in lora+'})

    lorap_emb_lr: float = field(default=1e-6, metadata={'help': 'The lr for embedding in lora+'})

    def to_peft_config(self) -> peft.LoraConfig:
        _dict = asdict(self)
        _dict.pop('lora_dtype')
        _dict.pop('lorap_lr_ratio')
        _dict.pop('lorap_emb_lr')
        return peft.LoraConfig(**_dict)

    def save_pretrained(self, save_directory: str, **kwargs) -> None:
        self.to_peft_config().save_pretrained(save_directory, **kwargs)
        additional_args = {
            'lora_dtype': self.lora_dtype,
            'lorap_lr_ratio': self.lorap_lr_ratio,
            'lorap_emb_lr': self.lorap_emb_lr,
        }
        with open(os.path.join(save_directory, 'additional_config.json'), 'w', encoding='utf-8') as f:
            json.dump(additional_args, f)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str] = None, **kwargs):
        if hasattr(PeftConfigMixin, 'from_pretrained_origin'):
            self = PeftConfigMixin.from_pretrained_origin(pretrained_model_name_or_path, subfolder, **kwargs)
        else:
            self = super(LoraConfig, cls).from_pretrained(pretrained_model_name_or_path, subfolder, **kwargs)

        if type(self) == peft.LoraConfig:
            self = LoraConfig(**self.to_dict())

        if os.path.isfile(os.path.join(pretrained_model_name_or_path, 'additional_config.json')):
            with open(
                    os.path.join(pretrained_model_name_or_path, 'additional_config.json'), 'r', encoding='utf-8') as f:
                _json = json.load(f)
                for key, value in _json.items():
                    setattr(self, key, value)

        return self


def _create_and_replace_hook(self, peft_config, adapter_name, target, *args, **kwargs):
    all_supported_names = ('linear', )
    all_supported_types = (torch.nn.Embedding, torch.nn.Conv2d, transformers.pytorch_utils.Conv1D, lora.Linear)
    target_modules = getattr(peft_config, 'target_modules', None)
    if target is None:
        return

    if isinstance(target_modules, str) and not any(
        [name in target.__class__.__name__.lower()
         for name in all_supported_names]) and not any([isinstance(target, type_) for type_ in all_supported_types]):
        return

    if target.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
        return

    return self._create_and_replace_origin(peft_config, adapter_name, target, *args, **kwargs)


def _convert_dtype(target: torch.nn.Module, adapter_name: str, lora_dtype: str):
    if lora_dtype is not None:
        torch_dtype = eval(f'torch.{lora_dtype}')
        if hasattr(target, 'lora_A') and adapter_name in target.lora_A:
            target.lora_A[adapter_name].to(torch_dtype)
            target.lora_B[adapter_name].to(torch_dtype)
        if hasattr(target, 'lora_embedding_A') and adapter_name in target.lora_embedding_A:
            target.lora_embedding_A[adapter_name].to(torch_dtype)
            target.lora_embedding_B[adapter_name].to(torch_dtype)


def create_optimizer_param_groups(self: PeftModel, **defaults):
    if not isinstance(self.peft_config[self.active_adapter],
                      LoraConfig) or self.peft_config[self.active_adapter].lorap_lr_ratio is None:
        return None

    def get_module(name):
        parent_idx = 2 if 'lora' in name else 1
        module_names = name.split(sep='.')[:-parent_idx]
        module = reduce(getattr, module_names, self.base_model)
        return module

    param_groups = {
        'groupA': {},
        'groupB': {},
        'groupB_no_decay': {},
        'embedding': {},
    }

    decay_parameters = Trainer.get_decay_parameter_names(None, self.base_model)
    for name, param in self.base_model.named_parameters():
        if not param.requires_grad:
            continue

        module = get_module(name)
        if isinstance(module, Embedding):
            param_groups['embedding'][name] = param
        elif 'lora_B' in name or param.ndim == 1:
            if name in decay_parameters:
                param_groups['groupB'][name] = param
            else:
                param_groups['groupB_no_decay'][name] = param
        else:
            param_groups['groupA'][name] = param

    lr = defaults['lr']
    weight_decay = defaults.get('weight_decay', 0.0)

    param_groups = [
        {
            'params': list(param_groups['groupA'].values()),
            'weight_decay': weight_decay,
            'lr': lr,
        },
        {
            'params': list(param_groups['embedding'].values()),
            'weight_decay': weight_decay,
            'lr': self.peft_config[self.active_adapter].lorap_emb_lr,
        },
        {
            'params': list(param_groups['groupB'].values()),
            'weight_decay': weight_decay,
            'lr': lr * self.peft_config[self.active_adapter].lorap_lr_ratio,
        },
        {
            'params': list(param_groups['groupB_no_decay'].values()),
            'weight_decay': 0.0,
            'lr': lr * self.peft_config[self.active_adapter].lorap_lr_ratio,
        },
    ]
    return param_groups


def adalora_forward(self, *args, **kwargs):
    from peft.utils.integrations import gather_params_ctx
    outputs = self.model.forward(*args, **kwargs)

    if (getattr(outputs, 'loss', None) is not None) and isinstance(outputs.loss, torch.Tensor):
        # Calculate the orthogonal regularization
        orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight

        if orth_reg_weight <= 0:
            raise ValueError('orth_reg_weight should be greater than 0. ')

        regu_loss = 0
        num_param = 0
        for n, p in self.model.named_parameters():
            if ('lora_A' in n or 'lora_B' in n) and self.trainable_adapter_name in n:
                if p.shape == torch.Size([0]):
                    with gather_params_ctx(p, fwd_module=self):
                        para_cov = p @ p.T if 'lora_A' in n else p.T @ p
                else:
                    para_cov = p @ p.T if 'lora_A' in n else p.T @ p
                I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov))  # noqa: E741
                I.requires_grad = False
                num_param += 1
                if isinstance(regu_loss, torch.Tensor):
                    regu_loss = regu_loss.to(para_cov.device)
                regu_loss += torch.norm(para_cov - I, p='fro')
        if num_param > 0:
            regu_loss = regu_loss / num_param
        else:
            regu_loss = 0
        if isinstance(regu_loss, torch.Tensor) and isinstance(outputs.loss, torch.Tensor):
            regu_loss = regu_loss.to(outputs.loss.device)
        outputs.loss += orth_reg_weight * regu_loss
    return outputs


def adalora_mask_to_budget(self, model, budget):
    value_ipt = {}
    vector_ipt = {}
    triplet_ipt = {}
    # Get the importance score for A, E, B
    for n, p in model.named_parameters():
        if f'lora_A.{self.adapter_name}' in n:
            entry_ipt = self._element_score(n)
            comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True)
            name_m = n.replace('lora_A', '%s')
            if name_m not in vector_ipt:
                vector_ipt[name_m] = [comb_ipt]
            else:
                vector_ipt[name_m].append(comb_ipt)
        if f'lora_B.{self.adapter_name}' in n:
            entry_ipt = self._element_score(n)
            comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1)
            name_m = n.replace('lora_B', '%s')
            if name_m not in vector_ipt:
                vector_ipt[name_m] = [comb_ipt]
            else:
                vector_ipt[name_m].append(comb_ipt)
        if f'lora_E.{self.adapter_name}' in n:
            entry_ipt = self._element_score(n)
            name_m = n.replace('lora_E', '%s')
            value_ipt[name_m] = entry_ipt

    all_score = []
    # Calculate the score for each triplet
    for name_m in vector_ipt:
        ipt_E = value_ipt[name_m]
        ipt_AB = torch.cat(vector_ipt[name_m], dim=1)
        sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
        name_E = name_m % 'lora_E'
        triplet_ipt[name_E] = sum_ipt.view(-1, 1)
        sum_ipt = sum_ipt.view(-1)
        if all_score:
            sum_ipt = sum_ipt.to(all_score[0].device)
        all_score.append(sum_ipt)

    # Get the threshold by ranking ipt
    mask_threshold = torch.kthvalue(
        torch.cat(all_score),
        k=self.init_bgt - budget,
    )[0].item()

    rank_pattern = {}
    # Mask the unimportant triplets
    with torch.no_grad():
        for n, p in model.named_parameters():
            if f'lora_E.{self.adapter_name}' in n:
                p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0)
                rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist()
    return rank_pattern


def keep_device_forward(self, *args, **kwargs):
    x = args[0]
    weight = self.weight if hasattr(self, 'weight') else self.weight0  # compat megatron
    if weight.device != x.device:
        return self.forward_origin(x.to(weight.device), *args[1:], **kwargs)
    else:
        return self.forward_origin(*args, **kwargs)


def hot_patch_peft_module():
    from peft.tuners.lora import LoraLayer
    if hasattr(LoraModel, '_create_and_replace_origin'):
        return

    # Fix Lora does not support NonDynamicallyQuantizableLinear
    LoraModel._create_and_replace_origin = LoraModel._create_and_replace
    LoraModel._create_and_replace = _create_and_replace_hook
    AdaLoraModel._create_and_replace_origin = AdaLoraModel._create_and_replace
    AdaLoraModel._create_and_replace = _create_and_replace_hook
    VeraModel._create_and_replace_origin = VeraModel._create_and_replace
    VeraModel._create_and_replace = _create_and_replace_hook
    BOFTModel._create_and_replace_origin = BOFTModel._create_and_replace
    BOFTModel._create_and_replace = _create_and_replace_hook
    if FourierFTModel is not None:
        FourierFTModel._create_and_replace_origin = FourierFTModel._create_and_replace
        FourierFTModel._create_and_replace = _create_and_replace_hook
    if BoneModel is not None:
        BoneModel._create_and_replace_origin = BoneModel._create_and_replace
        BoneModel._create_and_replace = _create_and_replace_hook

    # Support type conversion
    def __new_init__(self, model: torch.nn.Module, config: Dict[str, LoraConfig], adapter_name: str):

        self.__init_origin__(model, config, adapter_name)
        active_adapters = self.active_adapter
        if isinstance(active_adapters, str):
            active_adapters = [active_adapters]
        for active_adapter in active_adapters:
            active_config = config[active_adapter] if isinstance(config, dict) else config
            if hasattr(active_config, 'lora_dtype'):
                for name, module in model.named_modules():
                    if isinstance(module, LoraLayer):
                        _convert_dtype(module, active_adapter, active_config.lora_dtype)
                        for lora in list(module.lora_A.values()) + list(module.lora_B.values()):
                            if not hasattr(lora, 'forward_origin'):
                                lora.forward_origin = lora.forward
                                lora.forward = MethodType(keep_device_forward, lora)

    LoraModel.__init_origin__ = LoraModel.__init__
    LoraModel.__init__ = __new_init__

    # Support LoRA+
    PeftModel.create_optimizer_param_groups = create_optimizer_param_groups

    PeftConfigMixin.from_pretrained_origin = PeftConfigMixin.from_pretrained
    PeftConfigMixin.from_pretrained = LoraConfig.from_pretrained

    # Compatible with SwiftModel
    def dummy_function(*args, **kwargs):
        logger.warn(f'The function {kwargs["func"]} has no effects, consider using other functions.')

    PeftModel.activate_adapter = PeftModel.set_adapter
    PeftModel.deactivate_adapter = partial(dummy_function, func='deactivate_adapter')
    PeftModel.set_active_adapters = partial(dummy_function, func='set_active_adapters')

    # Fix adalora does not support device_map
    AdaLoraModel.forward = adalora_forward
    RankAllocator.mask_to_budget = adalora_mask_to_budget


def get_wrapped_class(module_class):
    """Get a custom wrapper class for peft classes to download the models from the ModelScope hub

    Args:
        module_class: The actual module class

    Returns:
        The wrapper
    """

    class PeftWrapper(module_class):

        @classmethod
        def from_pretrained(cls, model, model_id, *args, revision: Optional[str] = None, **kwargs):
            if not os.path.exists(model_id):
                model_id = snapshot_download(model_id, revision=revision)
            return module_class.from_pretrained(model, model_id, *args, **kwargs)

    PeftWrapper.__name__ = module_class.__name__
    PeftWrapper.__qualname__ = module_class.__qualname__
    return PeftWrapper


def wrap_module(module):
    if not hasattr(module, 'from_pretrained'):
        return module

    return get_wrapped_class(module)


hot_patch_peft_module()
PeftModel = wrap_module(PeftModel)
PeftConfig = wrap_module(PeftConfig)
PeftModelForSeq2SeqLM = wrap_module(PeftModelForSeq2SeqLM)
PeftModelForSequenceClassification = wrap_module(PeftModelForSequenceClassification)
PeftModelForTokenClassification = wrap_module(PeftModelForTokenClassification)
PeftModelForCausalLM = wrap_module(PeftModelForCausalLM)
PromptEncoderConfig = wrap_module(PromptEncoderConfig)
PromptTuningConfig = wrap_module(PromptTuningConfig)
PrefixTuningConfig = wrap_module(PrefixTuningConfig)
PromptLearningConfig = wrap_module(PromptLearningConfig)
LoraConfig = wrap_module(LoraConfig)
AdaLoraConfig = wrap_module(AdaLoraConfig)
LoHaConfig = wrap_module(LoHaConfig)
LoKrConfig = wrap_module(LoKrConfig)
LoftQConfig = wrap_module(LoftQConfig)
OFTConfig = wrap_module(OFTConfig)
BOFTConfig = wrap_module(BOFTConfig)
VeraConfig = wrap_module(VeraConfig)
OFTConfig = wrap_module(OFTConfig)
get_peft_config = get_peft_config
get_peft_model_state_dict = get_peft_model_state_dict
get_peft_model = get_peft_model