File size: 27,563 Bytes
96fe658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
import math
import re
import warnings
from itertools import chain
from typing import Dict, List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.lora import Conv2d as _Conv2d
from peft.tuners.lora import Embedding as _Embedding
from peft.tuners.lora import Linear as _Linear
from peft.tuners.lora import LoraLayer
from peft.tuners.lora import LoraModel as _LoraModel
from peft.tuners.lora.tp_layer import LoraParallelLinear as _LoraParallelLinear
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import _get_submodules, get_quantization_config
from transformers import Conv1D

from swift.utils import get_logger
from .peft import LoraConfig
from .utils import ActivationMixin, ModulesToSaveWrapper, SwiftAdapter

logger = get_logger()
dispatchers = []


class LoRAActivationMixin(ActivationMixin):

    @property
    def active_adapters(self):
        return self.get_activated_adapters()

    @property
    def active_adapter(self) -> str:
        return self.get_activated_adapters()

    def set_adapter(self, adapter_names, offload=None):
        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]

        # Deactivate grads on the inactive adapter and activate grads on the active adapter
        for layer_name in self.adapter_layer_names:
            module_dict = getattr(self, layer_name)
            for key, layer in module_dict.items():
                if key in adapter_names:
                    self.set_activation(key, True)
                    layer.requires_grad_(True)
                    SwiftAdapter.save_memory(layer, key, self.module_key, True)
                else:
                    self.set_activation(key, False)
                    layer.requires_grad_(False)
                    SwiftAdapter.save_memory(layer, key, self.module_key, False, offload=offload)

    def save_memory(self, adapter_name, activate, offload=None):
        for layer_name in self.adapter_layer_names:
            module_dict = getattr(self, layer_name)
            for key, layer in module_dict.items():
                if key == adapter_name:
                    if activate:
                        SwiftAdapter.save_memory(layer, layer_name + '.' + key, self.module_key, True)
                    else:
                        SwiftAdapter.save_memory(layer, layer_name + '.' + key, self.module_key, False, offload=offload)

    def merge(self, *args, **kwargs):
        if not self.unique_thread:
            raise AssertionError('Merge is unsupported in multiple thread, '
                                 'please set `USE_UNIQUE_THREAD=1` in env variable to merge LoRA.')
        return super().merge(*args, **kwargs)


if is_bnb_available():
    import bitsandbytes as bnb
    from peft.tuners.lora.bnb import Linear8bitLt as _Linear8bitLt

    class Linear8bitLt(LoRAActivationMixin, _Linear8bitLt):

        def __init__(
            self,
            *args,
            module_key: str,
            **kwargs,
        ):
            super(Linear8bitLt, self).__init__(module_key)
            self.set_activation(args[1], True)
            super(ActivationMixin, self).__init__(*args, **kwargs)

    def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, module_key: str, **kwargs):
        new_module = None

        if isinstance(target, BaseTunerLayer):
            target_base_layer = target.get_base_layer()
        else:
            target_base_layer = target

        loaded_in_8bit = kwargs.get('loaded_in_8bit', False)
        if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
            eightbit_kwargs = kwargs.copy()
            eightbit_kwargs.update({
                'has_fp16_weights': target.state.has_fp16_weights,
                'threshold': target.state.threshold,
                'index': target.index,
            })
            new_module = Linear8bitLt(target, adapter_name, module_key=module_key, **eightbit_kwargs)

        return new_module

    dispatchers.append(dispatch_bnb_8bit)

if is_bnb_4bit_available():
    from peft.tuners.lora.bnb import Linear4bit as _Linear4bit

    class Linear4bit(LoRAActivationMixin, _Linear4bit):

        def __init__(
            self,
            *args,
            module_key: str,
            **kwargs,
        ):
            super(Linear4bit, self).__init__(module_key)
            self.set_activation(args[1], True)
            super(ActivationMixin, self).__init__(*args, **kwargs)

    def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, module_key: str, **kwargs):
        new_module = None

        if isinstance(target, BaseTunerLayer):
            target_base_layer = target.get_base_layer()
        else:
            target_base_layer = target

        loaded_in_4bit = kwargs.get('loaded_in_4bit', False)
        if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
            fourbit_kwargs = kwargs.copy()
            fourbit_kwargs.update({
                'compute_dtype': target_base_layer.compute_dtype,
                'compress_statistics': target_base_layer.weight.compress_statistics,
                'quant_type': target_base_layer.weight.quant_type,
            })
            new_module = Linear4bit(target, adapter_name, module_key=module_key, **fourbit_kwargs)

        return new_module

    dispatchers.append(dispatch_bnb_4bit)


def dispatch_default(
    target: torch.nn.Module,
    adapter_name: str,
    lora_config: LoraConfig,
    module_key: str,
    **kwargs,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    if isinstance(target_base_layer, torch.nn.Embedding):
        embedding_kwargs = kwargs.copy()
        embedding_kwargs.pop('fan_in_fan_out', None)
        embedding_kwargs.update(lora_config.loftq_config)
        new_module = Embedding(target, adapter_name, module_key=module_key, **embedding_kwargs)
    elif isinstance(target_base_layer, torch.nn.Conv2d):
        kwargs.update(lora_config.loftq_config)
        new_module = Conv2d(target, adapter_name, module_key=module_key, **kwargs)
    elif isinstance(target_base_layer, torch.nn.Linear):
        if target_base_layer.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
            # Fix issue: https://github.com/modelscope/ms-swift/issues/342
            return None
        if kwargs['fan_in_fan_out']:
            warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. '
                          'Setting fan_in_fan_out to False.')
            kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = False
        kwargs.update(lora_config.loftq_config)
        new_module = Linear(target, adapter_name, module_key=module_key, **kwargs)
    elif isinstance(target_base_layer, Conv1D):
        if not kwargs['fan_in_fan_out']:
            warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. '
                          'Setting fan_in_fan_out to True.')
            kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = True
        kwargs.update(lora_config.loftq_config)
        new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, module_key=module_key, **kwargs)

    return new_module


dispatchers.append(dispatch_default)


class Embedding(LoRAActivationMixin, _Embedding):

    def __init__(
        self,
        *args,
        module_key: str,
        **kwargs,
    ) -> None:
        super(Embedding, self).__init__(module_key)
        self.set_activation(args[1], True)
        super(ActivationMixin, self).__init__(*args, **kwargs)


class Linear(LoRAActivationMixin, _Linear):

    def __init__(self, *args, module_key: str, **kwargs):
        super(Linear, self).__init__(module_key)
        self.set_activation(args[1], True)
        super(ActivationMixin, self).__init__(*args, **kwargs)


class Conv2d(LoRAActivationMixin, _Conv2d):

    def __init__(self, *args, module_key: str, **kwargs):
        super(Conv2d, self).__init__(module_key)
        self.set_activation(args[1], True)
        super(ActivationMixin, self).__init__(*args, **kwargs)


class LoraParallelLinear(LoRAActivationMixin, _LoraParallelLinear):

    def __init__(self, *args, module_key: str, **kwargs):
        super(LoraParallelLinear, self).__init__(module_key)
        self.set_activation(args[1], True)
        super(ActivationMixin, self).__init__(*args, **kwargs)


class LoraModel(_LoraModel):

    prefix: str = 'lora_'

    def __init__(self, model, config, adapter_name):
        if config is not None:
            super().__init__(model, config, adapter_name)
        else:
            nn.Module.__init__(self)
            self.model = model

    def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
        for active_adapter in self.active_adapters:
            bias = self.peft_config[active_adapter].bias
            if bias == 'none':
                continue

            if bias == 'all':
                for n, p in model.named_parameters():
                    if 'bias' in n:
                        p.requires_grad = True
            elif bias == 'lora_only':
                for m in model.modules():
                    if isinstance(m, LoraLayer) and hasattr(m, 'bias') and m.bias is not None:
                        m.bias.requires_grad = True
            else:
                raise NotImplementedError(f'Requested bias: {bias}, is not implemented.')

    def inject_adapter(self,
                       model: nn.Module,
                       adapter_name: str,
                       autocast_adapter_dtype: bool = True,
                       low_cpu_mem_usage: bool = False):
        r"""
        Override code:
        1. ModulesToSaveWrapper construction method: add module_key=key argument to offload to cpu
        """
        peft_config = self.peft_config[adapter_name]
        # Note: If possible, all checks should be performed *at the start of this method*.
        # This way, we can raise early if something goes wrong, without leaving the model
        # in a bad (half-initialized) state.
        self._check_new_adapter_config(peft_config)

        is_target_modules_in_base_model = False
        key_list = [key for key, _ in model.named_modules()]

        _check_for_modules_to_save = getattr(peft_config, 'modules_to_save', None) is not None
        _has_modules_to_save = False

        model_config = getattr(model, 'config', {'model_type': 'custom'})
        if hasattr(model_config, 'to_dict'):
            model_config = model_config.to_dict()

        peft_config = self._prepare_adapter_config(peft_config, model_config)

        from peft.tuners.tuners_utils import _maybe_include_all_linear_layers
        try:
            from peft.utils.constants import DUMMY_TARGET_MODULES
        except ImportError:  # compat with peft==0.11.*
            DUMMY_TARGET_MODULES = 'dummy-target-modules'
        if getattr(peft_config, 'target_modules', None) == DUMMY_TARGET_MODULES:
            # dummy adapter, we allow not matching any module
            key_list = []
            is_target_modules_in_base_model = True
        # update peft_config.target_modules if required
        peft_config = _maybe_include_all_linear_layers(peft_config, model)
        self._prepare_model(peft_config, model)

        for key in key_list:
            if '_part_' in key or not key:
                # Avoid lora conflict with part tuner
                continue
            # Check for modules_to_save in case
            if _check_for_modules_to_save and any(
                    key.endswith(f'{module_to_save}') for module_to_save in peft_config.modules_to_save):
                # Optionally set the modules to save
                parent, target, target_name = _get_submodules(model, key)

                if not isinstance(target, ModulesToSaveWrapper):
                    new_module = ModulesToSaveWrapper(target, adapter_name=adapter_name, module_key=key)
                    setattr(parent, target_name, new_module)
                else:
                    target.update(adapter_name)

                _has_modules_to_save = True
                continue

            if not self._check_target_module_exists(peft_config, key):
                continue

            self.targeted_module_names.append(key)
            is_target_modules_in_base_model = True
            parent, target, target_name = _get_submodules(model, key)
            self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key)

        if not is_target_modules_in_base_model and hasattr(peft_config, 'target_modules'):
            raise ValueError(f'Target modules {peft_config.target_modules} not found in the base model. '
                             f'Please check the target modules and try again.')

        self._mark_only_adapters_as_trainable(self.model)

        if self.peft_config[adapter_name].inference_mode:
            for n, p in self.model.named_parameters():
                if adapter_name in n:
                    p.requires_grad = False

        if _has_modules_to_save:
            if not hasattr(model, 'modules_to_save'):
                model.modules_to_save = set(peft_config.modules_to_save)
            else:
                model.modules_to_save.update(set(peft_config.modules_to_save))

    def _convert_dtype(self, target: nn.Module, lora_dtype: str):
        if lora_dtype == 'float32':
            torch_dtype = torch.float32
        elif lora_dtype == 'float16':
            torch_dtype = torch.float16
        elif lora_dtype == 'bfloat16':
            torch_dtype = torch.bfloat16
        else:
            torch_dtype = None

        if torch_dtype is not None:
            if hasattr(target, 'lora_A'):
                target.lora_A.to(torch_dtype)
                target.lora_B.to(torch_dtype)
            if hasattr(target, 'lora_embedding_A'):
                target.lora_embedding_A.to(torch_dtype)
                target.lora_embedding_B.to(torch_dtype)

    def _create_and_replace(
        self,
        lora_config,
        adapter_name,
        target,
        target_name,
        parent,
        current_key,
        **optional_kwargs,
    ):
        """
        Override code:
        1. Import bnb from upper code
        2. Support dtype converting
        3. Support skipping NonDynamicallyQuantizableLinear
        4. Add current_key argument to _create_new_module
        5. Use Class type defined here
        6. Allow new_module being None
        """
        if current_key is None:
            raise ValueError("Current Key shouldn't be `None`")

        # Regexp matching - Find key which matches current target_name in patterns provided
        pattern_keys = list(chain(lora_config.rank_pattern.keys(), lora_config.alpha_pattern.keys()))
        target_name_key = next(filter(lambda key: re.match(rf'.*\.{key}$', current_key), pattern_keys), current_key)
        r = lora_config.rank_pattern.get(target_name_key, lora_config.r)
        alpha = lora_config.alpha_pattern.get(target_name_key, lora_config.lora_alpha)

        kwargs = {
            'r': r,
            'lora_alpha': alpha,
            'lora_dropout': lora_config.lora_dropout,
            'fan_in_fan_out': lora_config.fan_in_fan_out,
            'init_lora_weights': lora_config.init_lora_weights,
            'use_rslora': lora_config.use_rslora,
            'use_dora': lora_config.use_dora,
            'loaded_in_8bit': getattr(self.model, 'is_loaded_in_8bit', False),
            'loaded_in_4bit': getattr(self.model, 'is_loaded_in_4bit', False),
        }
        # compat with peft==0.11.*
        if hasattr(lora_config, 'runtime_config'):
            kwargs['ephemeral_gpu_offload'] = lora_config.runtime_config.ephemeral_gpu_offload

        quant_methods = ['gptq', 'aqlm', 'awq']
        for quant_method in quant_methods:
            quantization_config = get_quantization_config(self.model, method=quant_method)
            if quantization_config is not None:
                kwargs[f'{quant_method}_quantization_config'] = quantization_config

        # note: AdaLoraLayer is a subclass of LoraLayer, we need to exclude it
        from peft.tuners.adalora import AdaLoraLayer

        if isinstance(target, LoraLayer) and not isinstance(target, AdaLoraLayer):
            if target.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
                # Fix issue: https://github.com/modelscope/ms-swift/issues/342
                return
            target.update_layer(
                adapter_name,
                r,
                lora_alpha=alpha,
                lora_dropout=lora_config.lora_dropout,
                init_lora_weights=lora_config.init_lora_weights,
                use_rslora=lora_config.use_rslora,
                use_dora=lora_config.use_dora,
            )
            self._convert_dtype(target, lora_config.lora_dtype)
            ActivationMixin.mark_all_sub_modules_as_plugin(target)
        else:
            new_module = self._create_new_module(lora_config, adapter_name, target, current_key=current_key, **kwargs)
            if new_module is not None:
                ActivationMixin.mark_all_sub_modules_as_plugin(new_module)
                if adapter_name not in self.active_adapters:
                    # adding an additional adapter: it is not automatically trainable
                    new_module.requires_grad_(False)
                self._replace_module(parent, target_name, new_module, target)
                self._convert_dtype(new_module, lora_config.lora_dtype)

    def _replace_module(self, parent, child_name, new_module, child):
        setattr(parent, child_name, new_module)
        # It's not necessary to set requires_grad here, as that is handled by
        # _mark_only_adapters_as_trainable

        # child layer wraps the original module, unpack it
        if hasattr(child, 'base_layer'):
            child = child.base_layer

        if not hasattr(new_module, 'base_layer'):
            if hasattr(new_module, 'W_q'):  # HQQ
                new_module.W_q = child.W_q
            else:
                new_module.weight = child.weight
            if hasattr(child, 'bias'):
                new_module.bias = child.bias

        if getattr(child, 'state', None) is not None:
            if hasattr(new_module, 'base_layer'):
                new_module.base_layer.state = child.state
            else:
                new_module.state = child.state
            new_module.to(child.weight.device)

        meta = torch.device('meta')
        # dispatch to correct device
        for name, module in new_module.named_modules():
            if (self.prefix in name) or ('ranknum' in name):
                weight = (
                    child.qweight if hasattr(child, 'qweight') else child.W_q if hasattr(child, 'W_q') else
                    child.weight if hasattr(child, 'weight') else next(child.parameters()))
                if not any(p.device == meta for p in module.parameters()):
                    module.to(weight.device)

    @staticmethod
    def _create_new_module(lora_config, adapter_name, target, **kwargs):
        """
        Override code:
        1. Support current_key argument
        2. Support MergedLinear
        3. Support skipping NonDynamicallyQuantizableLinear(Move to dispatcher)
        4. Use Class type defined here(Move to dispatcher)
        5. return None instead of raising error when target type not found
        """
        # Collect dispatcher functions to decide what backend to use for the replaced LoRA layer. The order matters,
        # because the first match is always used. Therefore, the default layers should be checked last.
        current_key = kwargs.pop('current_key')
        new_module = None
        if lora_config.use_qa_lora:
            kwargs['use_qa_lora'] = True
            kwargs['group_size'] = lora_config.group_size
        if lora_config.use_merged_linear:
            bias = kwargs.pop('bias', False)
            new_module = MergedLinear(
                adapter_name, current_key, target, bias=bias, enable_lora=lora_config.enable_lora, **kwargs)
        else:
            for dispatcher in dispatchers:
                new_module = dispatcher(target, adapter_name, lora_config=lora_config, module_key=current_key, **kwargs)
                if new_module is not None:  # first match wins
                    break

        if new_module is None:
            # no module could be matched
            logger.debug(
                f'Target module {target} is not supported. Currently, only the following modules are supported: '
                '`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`.')
            new_module = None

        return new_module


class LoRALayer(ActivationMixin):

    def __init__(
        self,
        adapter_name: str,
        module_key: str,
        r: int,
        lora_alpha: int,
        lora_dropout: float,
        merge_weights: bool,
    ):
        super().__init__(module_key)
        self.adapter_name = adapter_name
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights
        if not self._unique_thread:
            self.merge_weights = False


class MergedLinear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(self,
                 adapter_name: str,
                 module_key: str,
                 base_layer: nn.Linear,
                 r: int = 0,
                 lora_alpha: int = 1,
                 lora_dropout: float = 0.,
                 enable_lora: List[bool] = [False],
                 fan_in_fan_out: bool = False,
                 merge_weights: bool = True,
                 bias: bool = True,
                 device=None,
                 dtype=None,
                 **kwargs):
        nn.Linear.__init__(self, base_layer.in_features, base_layer.out_features, bias=bias, device=device, dtype=dtype)
        LoRALayer.__init__(
            self,
            adapter_name,
            module_key,
            r=r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            merge_weights=merge_weights)
        assert base_layer.out_features % len(enable_lora) == 0, \
            'The length of enable_lora must divide out_features'
        self.enable_lora = enable_lora
        self.fan_in_fan_out = fan_in_fan_out
        self.base_layer = base_layer
        # Actual trainable parameters
        if r > 0 and any(enable_lora):
            self.lora_A = nn.Parameter(self.weight.new_zeros((r * sum(enable_lora), base_layer.in_features)))
            self.lora_B = nn.Parameter(
                self.weight.new_zeros((base_layer.out_features // len(enable_lora) * sum(enable_lora),
                                       r)))  # weights for Conv1D with groups=sum(enable_lora)
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
            # Compute the indices
            self.lora_ind = self.weight.new_zeros((base_layer.out_features, ),
                                                  dtype=torch.bool).view(len(enable_lora), -1)
            self.lora_ind[enable_lora, :] = True
            self.lora_ind = self.lora_ind.view(-1)
        self.reset_parameters()
        self.weight = self.base_layer.weight
        if getattr(self.base_layer, 'bias', None) is not None:
            self.bias = self.base_layer.bias
        if fan_in_fan_out:
            self.weight.data = self.weight.data.transpose(0, 1)

    def reset_parameters(self):
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def zero_pad(self, x):
        result = x.new_zeros((len(self.lora_ind), *x.shape[1:]))
        result[self.lora_ind] = x
        return result

    def merge_AB(self):

        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w

        delta_w = F.conv1d(self.lora_A.unsqueeze(0), self.lora_B.unsqueeze(-1), groups=sum(self.enable_lora)).squeeze(0)
        return T(self.zero_pad(delta_w))

    def merge(self, **kwargs):
        if self.merge_weights and not self.merged:
            # Merge the weights and mark it
            if self.r > 0 and any(self.enable_lora):
                self.weight.data += self.merge_AB() * self.scaling

    def unmerge(self, **kwargs):
        if self.merge_weights and self.merged:
            # Make sure that the weights are not merged
            if self.r > 0 and any(self.enable_lora):
                self.weight.data -= self.merge_AB() * self.scaling
            self.merged = False

    def forward(self, x: torch.Tensor, **kwargs):

        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w

        if self.merged or not self.is_activated(self.adapter_name):
            return F.linear(x, T(self.weight), bias=self.bias)
        else:
            result = F.linear(x, T(self.weight), bias=self.bias)
            if self.r > 0:
                x_dtype = x.dtype
                x = x.to(self.lora_A.dtype)
                result += self.lora_dropout(x) @ T(self.merge_AB().T) * self.scaling
                result = result.to(x_dtype)
            return result


def mark_lora_as_trainable(model: nn.Module, adapter_name: str, bias: str = 'none') -> None:
    if bias == 'none':
        return
    elif bias == 'all':
        for n, p in model.named_parameters():
            if 'bias' in n:
                p.requires_grad = True
    elif bias == 'lora_only':
        for n, m in model.named_modules():
            if 'lora_' in n and f'.{adapter_name}' in n and \
                    hasattr(m, 'bias') and \
                    m.bias is not None:
                m.bias.requires_grad = True
    else:
        raise NotImplementedError


def lora_state_dict(state_dict, adapter_name: str, bias: str = 'none') -> Dict[str, torch.Tensor]:
    if bias == 'none':
        to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k}
    elif bias == 'all':
        to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k or 'bias' in k}
    elif bias == 'lora_only':
        to_return = {}
        for k in state_dict:
            if 'lora_' in k:
                to_return[k] = state_dict[k]
                bias_name = k.split('lora_')[0] + 'bias'
                if bias_name in state_dict:
                    to_return[bias_name] = state_dict[bias_name]
    else:
        raise NotImplementedError
    return {k: v for k, v in to_return.items() if (('lora_' in k and f'.{adapter_name}' in k) or ('bias' in k))}