File size: 27,563 Bytes
96fe658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
import math
import re
import warnings
from itertools import chain
from typing import Dict, List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.lora import Conv2d as _Conv2d
from peft.tuners.lora import Embedding as _Embedding
from peft.tuners.lora import Linear as _Linear
from peft.tuners.lora import LoraLayer
from peft.tuners.lora import LoraModel as _LoraModel
from peft.tuners.lora.tp_layer import LoraParallelLinear as _LoraParallelLinear
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import _get_submodules, get_quantization_config
from transformers import Conv1D
from swift.utils import get_logger
from .peft import LoraConfig
from .utils import ActivationMixin, ModulesToSaveWrapper, SwiftAdapter
logger = get_logger()
dispatchers = []
class LoRAActivationMixin(ActivationMixin):
@property
def active_adapters(self):
return self.get_activated_adapters()
@property
def active_adapter(self) -> str:
return self.get_activated_adapters()
def set_adapter(self, adapter_names, offload=None):
if isinstance(adapter_names, str):
adapter_names = [adapter_names]
# Deactivate grads on the inactive adapter and activate grads on the active adapter
for layer_name in self.adapter_layer_names:
module_dict = getattr(self, layer_name)
for key, layer in module_dict.items():
if key in adapter_names:
self.set_activation(key, True)
layer.requires_grad_(True)
SwiftAdapter.save_memory(layer, key, self.module_key, True)
else:
self.set_activation(key, False)
layer.requires_grad_(False)
SwiftAdapter.save_memory(layer, key, self.module_key, False, offload=offload)
def save_memory(self, adapter_name, activate, offload=None):
for layer_name in self.adapter_layer_names:
module_dict = getattr(self, layer_name)
for key, layer in module_dict.items():
if key == adapter_name:
if activate:
SwiftAdapter.save_memory(layer, layer_name + '.' + key, self.module_key, True)
else:
SwiftAdapter.save_memory(layer, layer_name + '.' + key, self.module_key, False, offload=offload)
def merge(self, *args, **kwargs):
if not self.unique_thread:
raise AssertionError('Merge is unsupported in multiple thread, '
'please set `USE_UNIQUE_THREAD=1` in env variable to merge LoRA.')
return super().merge(*args, **kwargs)
if is_bnb_available():
import bitsandbytes as bnb
from peft.tuners.lora.bnb import Linear8bitLt as _Linear8bitLt
class Linear8bitLt(LoRAActivationMixin, _Linear8bitLt):
def __init__(
self,
*args,
module_key: str,
**kwargs,
):
super(Linear8bitLt, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, module_key: str, **kwargs):
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
loaded_in_8bit = kwargs.get('loaded_in_8bit', False)
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
eightbit_kwargs = kwargs.copy()
eightbit_kwargs.update({
'has_fp16_weights': target.state.has_fp16_weights,
'threshold': target.state.threshold,
'index': target.index,
})
new_module = Linear8bitLt(target, adapter_name, module_key=module_key, **eightbit_kwargs)
return new_module
dispatchers.append(dispatch_bnb_8bit)
if is_bnb_4bit_available():
from peft.tuners.lora.bnb import Linear4bit as _Linear4bit
class Linear4bit(LoRAActivationMixin, _Linear4bit):
def __init__(
self,
*args,
module_key: str,
**kwargs,
):
super(Linear4bit, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, module_key: str, **kwargs):
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
loaded_in_4bit = kwargs.get('loaded_in_4bit', False)
if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
fourbit_kwargs = kwargs.copy()
fourbit_kwargs.update({
'compute_dtype': target_base_layer.compute_dtype,
'compress_statistics': target_base_layer.weight.compress_statistics,
'quant_type': target_base_layer.weight.quant_type,
})
new_module = Linear4bit(target, adapter_name, module_key=module_key, **fourbit_kwargs)
return new_module
dispatchers.append(dispatch_bnb_4bit)
def dispatch_default(
target: torch.nn.Module,
adapter_name: str,
lora_config: LoraConfig,
module_key: str,
**kwargs,
) -> Optional[torch.nn.Module]:
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Embedding):
embedding_kwargs = kwargs.copy()
embedding_kwargs.pop('fan_in_fan_out', None)
embedding_kwargs.update(lora_config.loftq_config)
new_module = Embedding(target, adapter_name, module_key=module_key, **embedding_kwargs)
elif isinstance(target_base_layer, torch.nn.Conv2d):
kwargs.update(lora_config.loftq_config)
new_module = Conv2d(target, adapter_name, module_key=module_key, **kwargs)
elif isinstance(target_base_layer, torch.nn.Linear):
if target_base_layer.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
# Fix issue: https://github.com/modelscope/ms-swift/issues/342
return None
if kwargs['fan_in_fan_out']:
warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. '
'Setting fan_in_fan_out to False.')
kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = False
kwargs.update(lora_config.loftq_config)
new_module = Linear(target, adapter_name, module_key=module_key, **kwargs)
elif isinstance(target_base_layer, Conv1D):
if not kwargs['fan_in_fan_out']:
warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. '
'Setting fan_in_fan_out to True.')
kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = True
kwargs.update(lora_config.loftq_config)
new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, module_key=module_key, **kwargs)
return new_module
dispatchers.append(dispatch_default)
class Embedding(LoRAActivationMixin, _Embedding):
def __init__(
self,
*args,
module_key: str,
**kwargs,
) -> None:
super(Embedding, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class Linear(LoRAActivationMixin, _Linear):
def __init__(self, *args, module_key: str, **kwargs):
super(Linear, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class Conv2d(LoRAActivationMixin, _Conv2d):
def __init__(self, *args, module_key: str, **kwargs):
super(Conv2d, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class LoraParallelLinear(LoRAActivationMixin, _LoraParallelLinear):
def __init__(self, *args, module_key: str, **kwargs):
super(LoraParallelLinear, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class LoraModel(_LoraModel):
prefix: str = 'lora_'
def __init__(self, model, config, adapter_name):
if config is not None:
super().__init__(model, config, adapter_name)
else:
nn.Module.__init__(self)
self.model = model
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
for active_adapter in self.active_adapters:
bias = self.peft_config[active_adapter].bias
if bias == 'none':
continue
if bias == 'all':
for n, p in model.named_parameters():
if 'bias' in n:
p.requires_grad = True
elif bias == 'lora_only':
for m in model.modules():
if isinstance(m, LoraLayer) and hasattr(m, 'bias') and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError(f'Requested bias: {bias}, is not implemented.')
def inject_adapter(self,
model: nn.Module,
adapter_name: str,
autocast_adapter_dtype: bool = True,
low_cpu_mem_usage: bool = False):
r"""
Override code:
1. ModulesToSaveWrapper construction method: add module_key=key argument to offload to cpu
"""
peft_config = self.peft_config[adapter_name]
# Note: If possible, all checks should be performed *at the start of this method*.
# This way, we can raise early if something goes wrong, without leaving the model
# in a bad (half-initialized) state.
self._check_new_adapter_config(peft_config)
is_target_modules_in_base_model = False
key_list = [key for key, _ in model.named_modules()]
_check_for_modules_to_save = getattr(peft_config, 'modules_to_save', None) is not None
_has_modules_to_save = False
model_config = getattr(model, 'config', {'model_type': 'custom'})
if hasattr(model_config, 'to_dict'):
model_config = model_config.to_dict()
peft_config = self._prepare_adapter_config(peft_config, model_config)
from peft.tuners.tuners_utils import _maybe_include_all_linear_layers
try:
from peft.utils.constants import DUMMY_TARGET_MODULES
except ImportError: # compat with peft==0.11.*
DUMMY_TARGET_MODULES = 'dummy-target-modules'
if getattr(peft_config, 'target_modules', None) == DUMMY_TARGET_MODULES:
# dummy adapter, we allow not matching any module
key_list = []
is_target_modules_in_base_model = True
# update peft_config.target_modules if required
peft_config = _maybe_include_all_linear_layers(peft_config, model)
self._prepare_model(peft_config, model)
for key in key_list:
if '_part_' in key or not key:
# Avoid lora conflict with part tuner
continue
# Check for modules_to_save in case
if _check_for_modules_to_save and any(
key.endswith(f'{module_to_save}') for module_to_save in peft_config.modules_to_save):
# Optionally set the modules to save
parent, target, target_name = _get_submodules(model, key)
if not isinstance(target, ModulesToSaveWrapper):
new_module = ModulesToSaveWrapper(target, adapter_name=adapter_name, module_key=key)
setattr(parent, target_name, new_module)
else:
target.update(adapter_name)
_has_modules_to_save = True
continue
if not self._check_target_module_exists(peft_config, key):
continue
self.targeted_module_names.append(key)
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(model, key)
self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key)
if not is_target_modules_in_base_model and hasattr(peft_config, 'target_modules'):
raise ValueError(f'Target modules {peft_config.target_modules} not found in the base model. '
f'Please check the target modules and try again.')
self._mark_only_adapters_as_trainable(self.model)
if self.peft_config[adapter_name].inference_mode:
for n, p in self.model.named_parameters():
if adapter_name in n:
p.requires_grad = False
if _has_modules_to_save:
if not hasattr(model, 'modules_to_save'):
model.modules_to_save = set(peft_config.modules_to_save)
else:
model.modules_to_save.update(set(peft_config.modules_to_save))
def _convert_dtype(self, target: nn.Module, lora_dtype: str):
if lora_dtype == 'float32':
torch_dtype = torch.float32
elif lora_dtype == 'float16':
torch_dtype = torch.float16
elif lora_dtype == 'bfloat16':
torch_dtype = torch.bfloat16
else:
torch_dtype = None
if torch_dtype is not None:
if hasattr(target, 'lora_A'):
target.lora_A.to(torch_dtype)
target.lora_B.to(torch_dtype)
if hasattr(target, 'lora_embedding_A'):
target.lora_embedding_A.to(torch_dtype)
target.lora_embedding_B.to(torch_dtype)
def _create_and_replace(
self,
lora_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
"""
Override code:
1. Import bnb from upper code
2. Support dtype converting
3. Support skipping NonDynamicallyQuantizableLinear
4. Add current_key argument to _create_new_module
5. Use Class type defined here
6. Allow new_module being None
"""
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
# Regexp matching - Find key which matches current target_name in patterns provided
pattern_keys = list(chain(lora_config.rank_pattern.keys(), lora_config.alpha_pattern.keys()))
target_name_key = next(filter(lambda key: re.match(rf'.*\.{key}$', current_key), pattern_keys), current_key)
r = lora_config.rank_pattern.get(target_name_key, lora_config.r)
alpha = lora_config.alpha_pattern.get(target_name_key, lora_config.lora_alpha)
kwargs = {
'r': r,
'lora_alpha': alpha,
'lora_dropout': lora_config.lora_dropout,
'fan_in_fan_out': lora_config.fan_in_fan_out,
'init_lora_weights': lora_config.init_lora_weights,
'use_rslora': lora_config.use_rslora,
'use_dora': lora_config.use_dora,
'loaded_in_8bit': getattr(self.model, 'is_loaded_in_8bit', False),
'loaded_in_4bit': getattr(self.model, 'is_loaded_in_4bit', False),
}
# compat with peft==0.11.*
if hasattr(lora_config, 'runtime_config'):
kwargs['ephemeral_gpu_offload'] = lora_config.runtime_config.ephemeral_gpu_offload
quant_methods = ['gptq', 'aqlm', 'awq']
for quant_method in quant_methods:
quantization_config = get_quantization_config(self.model, method=quant_method)
if quantization_config is not None:
kwargs[f'{quant_method}_quantization_config'] = quantization_config
# note: AdaLoraLayer is a subclass of LoraLayer, we need to exclude it
from peft.tuners.adalora import AdaLoraLayer
if isinstance(target, LoraLayer) and not isinstance(target, AdaLoraLayer):
if target.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
# Fix issue: https://github.com/modelscope/ms-swift/issues/342
return
target.update_layer(
adapter_name,
r,
lora_alpha=alpha,
lora_dropout=lora_config.lora_dropout,
init_lora_weights=lora_config.init_lora_weights,
use_rslora=lora_config.use_rslora,
use_dora=lora_config.use_dora,
)
self._convert_dtype(target, lora_config.lora_dtype)
ActivationMixin.mark_all_sub_modules_as_plugin(target)
else:
new_module = self._create_new_module(lora_config, adapter_name, target, current_key=current_key, **kwargs)
if new_module is not None:
ActivationMixin.mark_all_sub_modules_as_plugin(new_module)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
self._convert_dtype(new_module, lora_config.lora_dtype)
def _replace_module(self, parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# It's not necessary to set requires_grad here, as that is handled by
# _mark_only_adapters_as_trainable
# child layer wraps the original module, unpack it
if hasattr(child, 'base_layer'):
child = child.base_layer
if not hasattr(new_module, 'base_layer'):
if hasattr(new_module, 'W_q'): # HQQ
new_module.W_q = child.W_q
else:
new_module.weight = child.weight
if hasattr(child, 'bias'):
new_module.bias = child.bias
if getattr(child, 'state', None) is not None:
if hasattr(new_module, 'base_layer'):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
meta = torch.device('meta')
# dispatch to correct device
for name, module in new_module.named_modules():
if (self.prefix in name) or ('ranknum' in name):
weight = (
child.qweight if hasattr(child, 'qweight') else child.W_q if hasattr(child, 'W_q') else
child.weight if hasattr(child, 'weight') else next(child.parameters()))
if not any(p.device == meta for p in module.parameters()):
module.to(weight.device)
@staticmethod
def _create_new_module(lora_config, adapter_name, target, **kwargs):
"""
Override code:
1. Support current_key argument
2. Support MergedLinear
3. Support skipping NonDynamicallyQuantizableLinear(Move to dispatcher)
4. Use Class type defined here(Move to dispatcher)
5. return None instead of raising error when target type not found
"""
# Collect dispatcher functions to decide what backend to use for the replaced LoRA layer. The order matters,
# because the first match is always used. Therefore, the default layers should be checked last.
current_key = kwargs.pop('current_key')
new_module = None
if lora_config.use_qa_lora:
kwargs['use_qa_lora'] = True
kwargs['group_size'] = lora_config.group_size
if lora_config.use_merged_linear:
bias = kwargs.pop('bias', False)
new_module = MergedLinear(
adapter_name, current_key, target, bias=bias, enable_lora=lora_config.enable_lora, **kwargs)
else:
for dispatcher in dispatchers:
new_module = dispatcher(target, adapter_name, lora_config=lora_config, module_key=current_key, **kwargs)
if new_module is not None: # first match wins
break
if new_module is None:
# no module could be matched
logger.debug(
f'Target module {target} is not supported. Currently, only the following modules are supported: '
'`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`.')
new_module = None
return new_module
class LoRALayer(ActivationMixin):
def __init__(
self,
adapter_name: str,
module_key: str,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
super().__init__(module_key)
self.adapter_name = adapter_name
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights
if not self._unique_thread:
self.merge_weights = False
class MergedLinear(nn.Linear, LoRALayer):
# LoRA implemented in a dense layer
def __init__(self,
adapter_name: str,
module_key: str,
base_layer: nn.Linear,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
enable_lora: List[bool] = [False],
fan_in_fan_out: bool = False,
merge_weights: bool = True,
bias: bool = True,
device=None,
dtype=None,
**kwargs):
nn.Linear.__init__(self, base_layer.in_features, base_layer.out_features, bias=bias, device=device, dtype=dtype)
LoRALayer.__init__(
self,
adapter_name,
module_key,
r=r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
merge_weights=merge_weights)
assert base_layer.out_features % len(enable_lora) == 0, \
'The length of enable_lora must divide out_features'
self.enable_lora = enable_lora
self.fan_in_fan_out = fan_in_fan_out
self.base_layer = base_layer
# Actual trainable parameters
if r > 0 and any(enable_lora):
self.lora_A = nn.Parameter(self.weight.new_zeros((r * sum(enable_lora), base_layer.in_features)))
self.lora_B = nn.Parameter(
self.weight.new_zeros((base_layer.out_features // len(enable_lora) * sum(enable_lora),
r))) # weights for Conv1D with groups=sum(enable_lora)
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
# Compute the indices
self.lora_ind = self.weight.new_zeros((base_layer.out_features, ),
dtype=torch.bool).view(len(enable_lora), -1)
self.lora_ind[enable_lora, :] = True
self.lora_ind = self.lora_ind.view(-1)
self.reset_parameters()
self.weight = self.base_layer.weight
if getattr(self.base_layer, 'bias', None) is not None:
self.bias = self.base_layer.bias
if fan_in_fan_out:
self.weight.data = self.weight.data.transpose(0, 1)
def reset_parameters(self):
nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def zero_pad(self, x):
result = x.new_zeros((len(self.lora_ind), *x.shape[1:]))
result[self.lora_ind] = x
return result
def merge_AB(self):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
delta_w = F.conv1d(self.lora_A.unsqueeze(0), self.lora_B.unsqueeze(-1), groups=sum(self.enable_lora)).squeeze(0)
return T(self.zero_pad(delta_w))
def merge(self, **kwargs):
if self.merge_weights and not self.merged:
# Merge the weights and mark it
if self.r > 0 and any(self.enable_lora):
self.weight.data += self.merge_AB() * self.scaling
def unmerge(self, **kwargs):
if self.merge_weights and self.merged:
# Make sure that the weights are not merged
if self.r > 0 and any(self.enable_lora):
self.weight.data -= self.merge_AB() * self.scaling
self.merged = False
def forward(self, x: torch.Tensor, **kwargs):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
if self.merged or not self.is_activated(self.adapter_name):
return F.linear(x, T(self.weight), bias=self.bias)
else:
result = F.linear(x, T(self.weight), bias=self.bias)
if self.r > 0:
x_dtype = x.dtype
x = x.to(self.lora_A.dtype)
result += self.lora_dropout(x) @ T(self.merge_AB().T) * self.scaling
result = result.to(x_dtype)
return result
def mark_lora_as_trainable(model: nn.Module, adapter_name: str, bias: str = 'none') -> None:
if bias == 'none':
return
elif bias == 'all':
for n, p in model.named_parameters():
if 'bias' in n:
p.requires_grad = True
elif bias == 'lora_only':
for n, m in model.named_modules():
if 'lora_' in n and f'.{adapter_name}' in n and \
hasattr(m, 'bias') and \
m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
def lora_state_dict(state_dict, adapter_name: str, bias: str = 'none') -> Dict[str, torch.Tensor]:
if bias == 'none':
to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k}
elif bias == 'all':
to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k or 'bias' in k}
elif bias == 'lora_only':
to_return = {}
for k in state_dict:
if 'lora_' in k:
to_return[k] = state_dict[k]
bias_name = k.split('lora_')[0] + 'bias'
if bias_name in state_dict:
to_return[bias_name] = state_dict[bias_name]
else:
raise NotImplementedError
return {k: v for k, v in to_return.items() if (('lora_' in k and f'.{adapter_name}' in k) or ('bias' in k))}
|