File size: 91,877 Bytes
96fe658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
# Copyright (c) Alibaba, Inc. and its affiliates.
# Part of the implementation is borrowed from huggingface/trl.
import concurrent.futures
import inspect
import os
import re
import time
from collections import defaultdict, deque
from concurrent.futures import Future
from contextlib import contextmanager, nullcontext
from copy import copy, deepcopy
from dataclasses import asdict, dataclass, field
from math import ceil
from queue import Queue
from types import MethodType
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import transformers
from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from packaging import version
from torch.nn import ModuleList
from torch.utils.data import DataLoader
from transformers import PreTrainedModel, TrainerCallback
from transformers.trainer import Trainer
from trl import GRPOTrainer as HFGRPOTrainer
from trl.models import prepare_deepspeed
from trl.trainer.callbacks import SyncRefModelCallback
from trl.trainer.grpo_trainer import RepeatSampler, nanmax, nanmin, nanstd
from trl.trainer.utils import selective_log_softmax

from swift.llm import (InferRequest, MultiModelKeys, RequestConfig, RolloutInferRequest, RowPreprocessor, Template,
                       get_model_arch, to_device)
from swift.llm.infer.protocol import ChatCompletionResponse
from swift.llm.model.utils import get_llm_model
from swift.llm.template.base import MaxLengthError
from swift.llm.template.template_inputs import StdTemplateInputs
from swift.plugin import multi_turns, orms, rm_plugins
from swift.plugin.multi_turn import MultiTurnScheduler
from swift.utils import (JsonlWriter, empty_cache, get_current_device, get_device, get_logger, is_swanlab_available,
                         is_vllm_available, is_wandb_available, seed_worker, unwrap_model_for_generation)
from ..mixin import SwiftMixin
from .rlhf_mixin import RLHFTrainerMixin
from .utils import (_ForwardRedirection, patch_lora_merge, patch_lora_unmerge, patch_profiling_context,
                    patch_profiling_decorator)
from .vllm_client import VLLMClient

try:
    from trl.trainer.utils import entropy_from_logits
except ImportError:
    from .utils import entropy_from_logits

del HFGRPOTrainer.__init__
del HFGRPOTrainer.log

logger = get_logger()
if is_wandb_available():
    import wandb
if is_swanlab_available():
    import swanlab

InputsType = List[Dict[str, Union[torch.Tensor, Any]]]
# tuple: (messages, finish_reason)
OutputsType = List[Tuple[List[Dict], str]]
if not hasattr(RepeatSampler, 'old_len_func'):
    origin_len_func = RepeatSampler.__len__

    def patched_len(self) -> int:
        return (self.num_samples // self.batch_size) * self.batch_size * self.mini_repeat_count * self.repeat_count

    RepeatSampler.__len__ = patched_len
    RepeatSampler.old_len_func = origin_len_func


class GRPOCallback(TrainerCallback):

    def __init__(self, trainer):
        self.trainer = trainer

    # offload original_modules to cpu, to save memory
    def on_train_begin(self, args, state, control, **kwargs):
        self.trainer.queue = self.trainer.train_queue
        train_dataloader = getattr(state, 'train_dataloader', None) or kwargs.get('train_dataloader')
        self.trainer._prefetch(train_dataloader)


@dataclass
class DataCache:
    inputs: List[Dict] = field(default_factory=list)
    outputs: List[Dict] = field(default_factory=list)


def identity_data_collator(features):
    return features


class GRPOTrainer(RLHFTrainerMixin, SwiftMixin, HFGRPOTrainer):
    executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)

    def __init__(self,
                 model: Optional[Union[PreTrainedModel, nn.Module]] = None,
                 ref_model: Optional[Union[PreTrainedModel, nn.Module]] = None,
                 reward_model: Optional[List[Union[PreTrainedModel, nn.Module]]] = None,
                 reward_funcs: Optional[List[Union[str, Callable]]] = None,
                 *_args,
                 **kwargs):
        from swift.trainers.rlhf_arguments import GRPOConfig
        args: GRPOConfig = kwargs['args']
        self.args = args
        # for async generate
        self.train_queue = Queue()
        self.eval_queue = Queue()

        self.processing_class = kwargs.get('template').tokenizer

        if not isinstance(reward_funcs, list):
            reward_funcs = [reward_funcs]

        if reward_funcs:
            for i, reward_func in enumerate(reward_funcs):
                if reward_func in orms:
                    reward_func_class = orms[reward_func]
                    reward_func_args = list(inspect.signature(reward_func_class.__init__).parameters)
                    reward_func_kwargs = {
                        key: getattr(args, key)
                        for key in reward_func_args if key not in ['self', 'args', 'kwargs'] and hasattr(args, key)
                    }
                    if 'tokenizer' in reward_func_args:
                        reward_func_kwargs['tokenizer'] = self.processing_class
                    reward_funcs[i] = reward_func_class(**reward_func_kwargs)
                elif not callable(reward_func):
                    raise ValueError(f'reward_function {reward_func} is not implemented in swift.plugin')

        self.reward_funcs = reward_funcs
        self.reward_func_names = []
        for reward_func in reward_funcs:
            if inspect.isfunction(reward_func):
                reward_func_name = reward_func.__name__
            else:
                reward_func_name = reward_func.__class__.__name__
            self.reward_func_names.append(reward_func_name)

        self.reward_model_plugins = [None] * len(self.reward_funcs)

        if reward_model is not None:
            reward_template = kwargs.pop('reward_template')
            reward_plugins = args.reward_model_plugin
            if reward_plugins is None:
                reward_plugins = ['default'] * len(reward_model)
            assert len(reward_plugins) == len(reward_model), (
                f"The number of 'reward_model_plugin' ({len(reward_plugins)}) does not match "
                f"the number of 'reward_model' ({len(reward_model)}). "
                "Please provide a corresponding 'reward_model_plugin' for each 'reward_model'.")
            for rm, rm_plugin, rm_template in zip(reward_model, reward_plugins, reward_template):
                # Set encoding mode train(see details in Template.encode).
                # Set max_length to None to disable truncation, as the input length has already been truncated earlier.
                rm_template.set_mode('train')
                rm_template.max_length = None
                if rm_plugin not in rm_plugins:
                    raise ValueError(f'rm_plugin {rm_plugin} is not implemented in swift.llm.plugin')
                self.reward_model_plugins.append(rm_plugins[rm_plugin](model=rm, template=rm_template))
                self.reward_funcs.append(rm)
                self.reward_func_names.append(rm.config._name_or_path.split('/')[-1])

        self.multi_turn_scheduler = None
        if self.args.multi_turn_scheduler:
            if isinstance(self.args.multi_turn_scheduler, str):
                assert self.args.multi_turn_scheduler in multi_turns
                multi_turn_scheduler = multi_turns[self.args.multi_turn_scheduler](max_turns=self.args.max_turns)
                self.multi_turn_scheduler: MultiTurnScheduler = multi_turn_scheduler
            else:
                assert isinstance(multi_turn_scheduler, MultiTurnScheduler)
                self.multi_turn_scheduler: MultiTurnScheduler = self.args.multi_turn_scheduler

        self.num_generations = args.num_generations
        self.temperature = args.temperature
        self.vllm_mode = args.vllm_mode
        self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization  # only applies to colocation mode
        self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size  # only applies to colocation mode
        self.loss_type = args.loss_type
        self.max_completion_length = args.max_completion_length
        self.completion_length_limit_scope = args.completion_length_limit_scope
        model.warnings_issued['estimate_tokens'] = True

        kwargs['data_collator'] = identity_data_collator  # No data collation is needed in GRPO
        self.shuffle_dataset = args.dataset_shuffle

        self.use_vllm = args.use_vllm
        self.async_generate = args.async_generate
        vllm_client = kwargs.pop('vllm_client')  # for external vllm

        super().__init__(model, ref_model, *_args, **kwargs)
        if self.args.eval_strategy != 'no':
            total_eval_batch_size = self.args.per_device_eval_batch_size * \
                self.accelerator.num_processes // self.args.num_generations
            assert len(self.eval_dataset) >= total_eval_batch_size, (
                f'eval_dataset size {len(self.eval_dataset)} is smaller than '
                f'total_eval_batch_size {total_eval_batch_size}. '
                f'Please increase the size of eval_dataset or set a larger value for split_dataset_ratio.')
        # Multi-step
        self.num_iterations = args.num_iterations  # = 𝜇 in the GRPO paper

        self.epsilon_low = args.epsilon
        self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon

        self.top_entropy_quantile = args.top_entropy_quantile
        self.importance_sampling_level = args.importance_sampling_level

        self.use_liger_loss = self.args.use_liger_kernel
        if self.use_liger_loss:
            from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss

            self.liger_grpo_loss = LigerFusedLinearGRPOLoss(
                beta=self.beta,
                epsilon_low=self.epsilon_low,
                epsilon_high=self.epsilon_high,
                temperature=self.temperature,
                use_ref_model=self.beta != 0.0,
                loss_type=self.loss_type,
                max_completion_length=self.max_completion_length,
            )
            self._forward_redirection = _ForwardRedirection()

        self._metrics = {'train': defaultdict(list), 'eval': defaultdict(list)}
        self.log_completions = args.log_completions
        self.wandb_log_unique_prompts = args.wandb_log_unique_prompts
        self.num_completions_to_print = args.num_completions_to_print
        self.jsonl_writer = JsonlWriter(os.path.join(self.args.output_dir, 'completions.jsonl'))
        self._textual_logs = {
            'prompt': deque(maxlen=args.generation_batch_size),
            'completion': deque(maxlen=args.generation_batch_size),
            'rewards': defaultdict(lambda: deque(maxlen=args.generation_batch_size)),
        }
        self.compute_entropy = self.args.log_entropy or self.top_entropy_quantile < 1.0
        if self.args.log_entropy:
            self._textual_logs.update({'entropy': deque(maxlen=args.generation_batch_size)})
        # Ensure each process receives a unique seed to prevent duplicate completions when generating with
        # transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
        # it's safer to set it in all cases.
        set_seed(args.seed, device_specific=True)
        if is_peft_model(self.model):
            self.parameter_groups, self.parameter_groups_no_lora = self.split_batches()
        self.use_fast_infer = self.use_vllm  # whether to use the PT backend
        self.vllm_use_async_engine = False
        self.enable_offload = False
        # gym engine
        self.use_gym_env = False
        if self.use_vllm:
            if not is_vllm_available():
                raise ImportError('vLLM is not available and `use_vllm` is set to True. '
                                  'Please install vLLM with `pip install vllm -U` to use it.')
            if self.vllm_mode == 'server':
                self.vllm_client: VLLMClient = vllm_client
                if self.accelerator.is_main_process:
                    vllm_use_async_engine = [self.vllm_client.get_engine_type() == 'AsyncLLMEngine']
                    use_gym_env = [self.vllm_client.use_gym_env]
                else:
                    vllm_use_async_engine = [False]
                    use_gym_env = [False]
                self.vllm_use_async_engine = broadcast_object_list(vllm_use_async_engine, from_process=0)[0]
                self.use_gym_env = broadcast_object_list(use_gym_env, from_process=0)[0]
                if self.use_gym_env:
                    self._textual_logs['trajactory_info'] = deque(maxlen=args.generation_batch_size)
                    self.reward_func_names = ['gym_reward']

            elif self.vllm_mode == 'colocate':
                if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0:
                    raise ValueError(
                        f'vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size '
                        f'({self.accelerator.num_processes}) evenly.')

                if self.vllm_tensor_parallel_size > 1:
                    # Create subgroups of ranks for TP, each group with `vllm_tensor_parallel_size` ranks.
                    # For example, if world_size=8 and vllm_tensor_parallel_size=2 → groups: [0,1], [2,3], [4,5], [6,7]
                    self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration([
                        list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size))
                        for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size)
                    ])
                self.enable_offload = self.args.offload_model or self.args.offload_optimizer
                context = self.offload_context if self.enable_offload else nullcontext

                with context():
                    self.engine = self.prepare_vllm(model)
                    if self.args.sleep_level > 0:
                        self.engine.engine.sleep(self.args.sleep_level)

        else:
            from swift.llm import PtEngine
            self.engine = PtEngine.from_model_template(self.model, self.template, max_batch_size=0)  # 0: no limit

        if not self.reward_funcs and not self.use_gym_env:
            raise ValueError('You must specify reward_funcs or reward_model')

        # Reward weights
        if args.reward_weights is not None:
            if len(args.reward_weights) != len(reward_funcs):
                raise ValueError(f'Number of reward weights ({len(args.reward_weights)}) must match number of reward '
                                 f'functions ({len(reward_funcs)})')
            self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
        else:
            self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)
        self._last_loaded_step = -1  # tag to avoid useless loading during grad accumulation
        self.request_config = RequestConfig(
            n=1,
            max_tokens=args.max_completion_length,
            temperature=args.temperature,
            top_p=args.top_p,
            top_k=args.top_k,
            repetition_penalty=args.repetition_penalty,
            stop=args.stop_words,
        )

        # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
        # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
        # self.model_accepts_loss_kwargs to False to enable scaling.
        self.model_accepts_loss_kwargs = False
        self.padding_free = self.template.padding_free
        self.template.padding_free = False
        self.template._packing = False
        for i, reward_func in enumerate(self.reward_funcs):
            if isinstance(reward_func, PreTrainedModel):
                if self.is_deepspeed_enabled:
                    self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
                else:
                    self.reward_funcs[i] = self.accelerator.prepare_model(
                        reward_func, evaluation_mode=True, device_placement=True)

        # Tracks the number of iterations (forward + backward passes), including those within a gradient accumulation cycle. # noqa
        self._step = 0
        # Buffer the batch to reuse generated outputs across multiple updates. For more details, see
        # `_get_train_sampler` and `_prepare_inputs`.
        self._buffered_inputs = None

        if args.sync_ref_model:
            self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))

        if self.async_generate:
            self.add_callback(GRPOCallback(self))

        if self.args.dynamic_sample or self.template.truncation_strategy == 'raise':
            self.resample_dataset = deepcopy(self.train_dataset)

            def cyclic_iter(iterable):
                while True:
                    for x in iterable:
                        yield x

            @contextmanager
            def seed_context():
                # Use a different seed to ensure the resample dataset does not overlap with train_dataset
                seed = self.args.seed
                self.args.seed = seed + 1
                yield
                self.args.seed = seed

            with seed_context():
                if self.args.dynamic_sample:
                    self.dynamic_resample_iterator = cyclic_iter(self.get_train_dataloader())

                if self.template.truncation_strategy == 'raise':

                    @contextmanager
                    def single_sample_context():
                        # Patch generation-related parameters to ensure that only one sample is processed per iteration
                        # when resampling truncated data.
                        origin_ng = self.num_generations
                        origin_gbs = self.args.generation_batch_size
                        origin_spg = self.args.steps_per_generation
                        try:
                            self.num_generations = 1
                            self.args.generation_batch_size = 1
                            self.args.steps_per_generation = 1
                            yield
                        finally:
                            self.num_generations = origin_ng
                            self.args.generation_batch_size = origin_gbs
                            self.args.steps_per_generation = origin_spg

                    with single_sample_context():
                        self.truncated_resample_iterator = cyclic_iter(self.get_train_dataloader())
        # flag indicating whether the evaluation has started
        self.eval_flag = False

    @patch_profiling_decorator
    def _prepare_inputs(self, generation_batch: dict[str, Union[torch.Tensor,
                                                                Any]]) -> dict[str, Union[torch.Tensor, Any]]:
        # Prepares inputs for model training/evaluation by managing completion generation and batch handling.
        # During training:
        #   - Receives the local generation batch (Per-GPU batch size × steps per generation)
        #     from the modified training dataloader instead of the standard local batch
        #   - Generates completions once for the entire generation batch and splits it into batches of size
        #     `per_device_train_batch_size`
        #   - Buffers these completions and returns the appropriate slice for the current accumulation step
        #   - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations)
        # During evaluation:
        #   - The input is treated as a standard local batch (no accumulation, no multiple iterations)
        #   - Completions are generated for each batch without buffering or reuse
        # Returns a single local batch in both cases.

        mode = 'train' if self.model.training else 'eval'
        if mode == 'train':
            generate_every = self.args.steps_per_generation * self.num_iterations
            if self._step % generate_every == 0 or self._buffered_inputs is None:
                generation_batch = self._generate_and_score_completions(generation_batch)
                self._buffered_inputs = generation_batch  # < this is the change
            inputs = self._buffered_inputs[self._step % self.args.steps_per_generation]
            self._step += 1
        else:
            inputs = self._generate_and_score_completions(generation_batch)
        return inputs

    def split_batches(self):
        """Sync weights in batches
        Only split LLM layers for now:
        1. N batches for layers
        2. other, embeds, lm_heads in one batch
        3. multi-modal components in one batch
        """
        model = self.accelerator.unwrap_model(self.model)
        if self.args.move_model_batches is None:
            # All in one
            return [[n for n, p in model.named_parameters() if 'ref_model' not in n]], [None]

        model_arch = get_model_arch(model.model_meta.model_arch)
        non_llm_parameters = []
        llm_embeds = []
        parameters = []
        pattern = r'\.(\d+)\.'

        layer_count = None
        # Get the number of layers in LLM modules
        for name, module in model.named_modules():
            if isinstance(module, ModuleList):
                if model_arch is not None and isinstance(model_arch, MultiModelKeys):
                    llm = model_arch.language_model
                    vision_tower = model_arch.vision_tower
                    if any(vt in name for vt in vision_tower):
                        continue
                    if isinstance(llm, list):
                        llm = llm[0]
                    if name.startswith('base_model'):
                        name = name.replace('base_model.', '')
                    if llm in name:
                        layer_count = len(module)
                else:
                    layer_count = len(module)
        assert layer_count is not None, 'Cannot find ModuleList to split modules.'

        n_layers = ceil(layer_count / self.args.move_model_batches)
        for _ in range(self.args.move_model_batches):
            parameters.append([])

        def replace_lora(name):
            if 'lora_' in name:
                return ''
            else:
                return name.replace('base_layer.', '')

        def remove_lora_and_prefix(names):
            names = set([re.sub(r'^_model\.', '', replace_lora(n)) for n in names])
            return [n for n in names if n]

        def split_llm(name):
            match = re.search(pattern, name)
            if match:
                number = match.group(1)
                group = int(number) // n_layers
                parameters[group].append(name)
            else:
                llm_embeds.append(name)

        for name, parameter in model.named_parameters():
            if 'ref_model' in name:
                continue
            if model_arch is not None and isinstance(model_arch, MultiModelKeys):
                llm = model_arch.language_model
                vision_tower = model_arch.vision_tower
                if any(vt in name for vt in vision_tower):
                    non_llm_parameters.append(name)
                elif isinstance(llm, list):
                    llm = llm[0]
                    if llm in name:
                        split_llm(name)
                    else:
                        non_llm_parameters.append(name)
            else:
                split_llm(name)

        if llm_embeds:
            parameters.append(llm_embeds)
        if non_llm_parameters:
            parameters.append(non_llm_parameters)
        parameters = [p for p in parameters if p]
        parameters_no_lora = [remove_lora_and_prefix(p_list) for p_list in parameters]
        return parameters, parameters_no_lora

    def prepare_vllm(self, model):
        from swift.tuners import Swift
        from swift.llm.infer.infer_engine import GRPOVllmEngine
        max_num_seqs = (
            self.args.per_device_train_batch_size * self.vllm_tensor_parallel_size * self.args.steps_per_generation)
        current_device = get_device()
        with Swift.grpo_context(model, self.template.processor):
            engine = GRPOVllmEngine(
                model.model_dir,
                model.model_info.torch_dtype,
                model_type=model.model_meta.model_type,
                use_async_engine=False,  # TODO: async engine for colocate
                tensor_parallel_size=self.vllm_tensor_parallel_size,
                gpu_memory_utilization=self.vllm_gpu_memory_utilization,
                enable_prefix_caching=self.args.vllm_enable_prefix_caching,
                max_num_seqs=max_num_seqs,
                enforce_eager=self.args.vllm_enforce_eager,
                limit_mm_per_prompt=self.args.vllm_limit_mm_per_prompt,
                enable_sleep_mode=self.args.sleep_level > 0,
                device=current_device,
                max_model_len=self.args.vllm_max_model_len,
                seed=self.accelerator.process_index // self.vllm_tensor_parallel_size,
                template=self.template,
                distributed_executor_backend='external_launcher',
            )
        return engine

    @contextmanager
    def _template_context(self, template: Template):
        # The max_length for prompt and completion has already been restricted, so there is no need for max_length here.
        max_length = template.max_length
        mode = template.mode
        if mode in {'vllm', 'pt', 'lmdeploy'}:
            template.set_mode('train')
        template.max_length = None
        try:
            yield
        finally:
            template.set_mode(mode)
            template.max_length = max_length

    @patch_profiling_decorator
    def _move_model_to_vllm(self, skip_async_check=False):
        deepspeed_plugin = self.accelerator.state.deepspeed_plugin
        zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3
        if zero_stage_3:
            import deepspeed
            gather_if_zero3 = deepspeed.zero.GatheredParameters
        else:
            gather_if_zero3 = nullcontext

        if self.args.async_generate and not skip_async_check:
            # before sync weight, we should wait async generate finish
            self._wait_queue()

        if is_peft_model(self.model):
            for i, parameter_group in enumerate(self.parameter_groups):  # < this is the change
                parameter_group_no_lora = self.parameter_groups_no_lora[i]
                parameters = [
                    parameter for name, parameter in self.model.named_parameters()
                    if not parameter_group or name in parameter_group
                ]
                with gather_if_zero3(parameters), patch_lora_merge(self.model, parameter_group):
                    self.model.merge_adapter()
                    state_dict = self.model.state_dict()
                    state_dict = {
                        k.removeprefix('base_model.model.').replace('.base_layer', ''): v
                        for k, v in state_dict.items()
                    }
                    state_dict = {k: v for k, v in state_dict.items() if self.model.prefix not in k}
                    # When module to save, remove its prefix and discard the original module
                    state_dict = {
                        k.replace('modules_to_save.default.', ''): v
                        for k, v in state_dict.items() if 'original_module' not in k
                    }
                    if parameter_group_no_lora:
                        parameter_group_no_lora = [n.replace('base_model.model.', '') for n in parameter_group_no_lora]
                        state_dict = {k: v for k, v in state_dict.items() if k in parameter_group_no_lora}
                    assert len(state_dict) > 0 and all(
                        [state.shape != torch.Size([0]) for state in state_dict.values()])

                    if self.vllm_mode == 'server' and self.accelerator.is_main_process:
                        for name, param in state_dict.items():
                            self.vllm_client.update_named_param(name, param)
                    elif self.vllm_mode == 'colocate':
                        llm_model = self.engine.inner_model
                        llm_model.load_weights(state_dict.items())
                    with patch_lora_unmerge(self.model):
                        self.model.unmerge_adapter()
                    del state_dict
        else:
            for name, param in self.model.named_parameters():
                with gather_if_zero3([param]):
                    if self.vllm_mode == 'server' and self.accelerator.is_main_process:
                        self.vllm_client.update_named_param(name, param.data)
                    elif self.vllm_mode == 'colocate':
                        llm_model = self.engine.inner_model
                        llm_model.load_weights([(name, param.data)])

        if self.vllm_mode == 'server' and self.accelerator.is_main_process:
            self.vllm_client.reset_prefix_cache()
        elif self.vllm_mode == 'colocate':
            # since vLLM model weights has been updated, we should reset the prefix cache
            self.engine.engine.reset_prefix_cache()

    def _wait_queue(self):
        while self._queue.empty():
            time.sleep(0.01)

    def _infer(self,
               inputs: Optional[InputsType],
               request_config: RequestConfig,
               is_global_inputs: bool = False) -> List[ChatCompletionResponse]:
        request_config = self._get_request_config()
        # keys from InferRequest
        per_device_size = len(inputs)
        if is_global_inputs:
            per_device_size //= self.accelerator.num_processes
        if self.vllm_mode == 'server':
            # for server mode, we gather all the inputs and send to remote vllm server in main process
            if is_global_inputs:
                # async generate, pre-gather to avoid potential communicate operator
                all_inputs = inputs
                all_input_lengths = [per_device_size] + [0] * (self.accelerator.num_processes - 1)
            else:
                all_inputs = gather_object(inputs)
                all_input_lengths = gather_object([len(inputs)])

            if not any(inputs for inputs in all_inputs):
                return []

            if self.accelerator.is_main_process:
                results: List[ChatCompletionResponse] = self._engine_infer(
                    infer_requests=all_inputs, request_config=request_config)
            else:
                results = [None] * len(all_inputs)
            # Broadcast the results from the main process to all processes,
            # ensuring each process receives its corresponding slice.
            if not is_global_inputs:
                results = broadcast_object_list(results, from_process=0)
                start_idx = sum(all_input_lengths[:self.accelerator.process_index])
                end_idx = start_idx + all_input_lengths[self.accelerator.process_index]
                results = results[start_idx:end_idx]
            else:
                results = results if self.accelerator.is_main_process else []
        else:
            # pt / vllm colocate
            if self.vllm_tensor_parallel_size > 1:
                # Gather prompts from all ranks in the TP group and flatten.
                # Each rank starts with its own prompts; after gathering, all ranks see the full group set.
                # Note: The input sizes may differ across ranks (e.g., in multi-turn scenarios,
                # the amount of data each rank continues to process may vary).
                local_rank_in_group = torch.distributed.get_rank(group=self.tp_group)
                local_input_length = len(inputs)
                all_input_lengths = [None] * self.vllm_tensor_parallel_size
                torch.distributed.all_gather_object(all_input_lengths, local_input_length, group=self.tp_group)
                start_idx = sum(all_input_lengths[:local_rank_in_group])
                end_idx = start_idx + all_input_lengths[local_rank_in_group]

                # orig_size = len(inputs)/
                gathered_inputs = [None for _ in range(self.vllm_tensor_parallel_size)]
                torch.distributed.all_gather_object(gathered_inputs, inputs, group=self.tp_group)
                inputs = [p for sublist in gathered_inputs for p in sublist]
            # Set request_config.seed
            # 1. Ensure that the seed for vLLM Engines within each TP (Tensor Parallelism) group is the same;
            #   otherwise, the program may hang.
            # 2. Ensure that the seed for vLLM Engines across different TP groups is different;
            #   otherwise, identical completions will be generated.
            results: List[ChatCompletionResponse] = self._engine_infer(
                infer_requests=inputs, request_config=request_config)

            if self.vllm_tensor_parallel_size > 1:
                # Slice completions for this rank within its TP group.
                # Each rank generates all outputs — we keep only our share.
                results = results[start_idx:end_idx]
        return results

    def _get_request_config(self) -> RequestConfig:
        request_config = copy(self.request_config)
        if self.args.vllm_mode == 'colocate' and self.vllm_tensor_parallel_size > 1:
            # Set request_config.seed
            # 1. Ensure that the seed for vLLM Engines within each TP (Tensor Parallelism) group is the same;
            #   otherwise, the program may hang.
            # 2. Ensure that the seed for vLLM Engines across different TP groups is different;
            #   otherwise, identical completions will be generated.
            mode = 'train' if self.model.training else 'eval'
            batch_size = (
                self.args.per_device_train_batch_size
                * self.args.gradient_accumulation_steps if mode == 'train' else self.args.per_device_eval_batch_size)
            batch_size *= self.vllm_tensor_parallel_size
            # Since the TP (Tensor Parallelism) group gathers the inputs,
            # multiply the batch size by the TP parallel size.
            request_config.seed = batch_size * (self.accelerator.process_index // self.vllm_tensor_parallel_size)

        return request_config

    def _set_inputs_system(self, inputs: InputsType) -> InputsType:
        if not self.template.template_meta.default_system:
            return
        if all(_input['messages'][0]['role'] == 'system' for _input in inputs):
            return
        for _input in inputs:
            messages = _input['messages']
            if messages[0]['role'] != 'system':
                messages.insert(0, {'role': 'system', 'content': self.template.template_meta.default_system})

    def _infer_single_or_multi_turn(self,
                                    inputs: InputsType,
                                    request_config: RequestConfig,
                                    is_global_inputs: bool = False) -> OutputsType:
        """Perform multi-turn or single-turn inference

        Args:
            inputs: list of input requests
            request_config: Inference configuration parameters
            is_global_inputs:
                A boolean indicating whether the inputs are global. When set to True,
                the returned results in the main process will be a complete list of
                global_outputs, while other processes will return an empty list [].
        Returns:
            List of outputs where each entry contains:
            - List of responses per prompt
            - Each response is a tuple of (message_history, finish_reason)
        """
        self._set_inputs_system(inputs)
        # infer first turn
        results: List[ChatCompletionResponse] = self._infer(inputs, request_config, is_global_inputs)
        outputs = []
        if not self.multi_turn_scheduler and not self.vllm_use_async_engine:
            # message concatenation
            for i, output in enumerate(results):
                _choices = []
                for choice in output.choices:
                    _input: Dict = deepcopy(inputs[i])
                    InferRequest.remove_response(_input['messages'])
                    _input['messages'].append({'role': 'assistant', 'content': choice.message.content})
                    _choices.append((_input['messages'], choice.finish_reason, {}))
                outputs.append(_choices)
            outputs = [item for sublist in outputs for item in sublist]
        else:
            # vLLMAsyncLLMEngine, only server mode is supported right now.
            # NOTE: The message concatenation has already been done in the engine.
            if self.vllm_use_async_engine:
                for i, output in enumerate(results):
                    _choices = []
                    for choice in output.choices:
                        # concated in Engine
                        if self.use_gym_env:
                            _choices.append(
                                (choice.messages, choice.finish_reason, choice.total_reward, choice.trajectory_info))
                        else:
                            _choices.append((choice.messages, choice.finish_reason))
                    outputs.append(_choices)
                outputs = [item for sublist in outputs for item in sublist]
            else:
                # PTEngine or vLLMLLMEngine
                orig_size = len(inputs)
                outputs = [None] * orig_size
                # we remove origin response in first turn
                current_turn = 1
                while True:
                    has_local_data = len(inputs) > 0
                    has_global_data = gather_object([has_local_data])
                    if not any(has_global_data):
                        break
                    # inputs for current turn
                    current_inputs = []
                    cnt = 0
                    # combine completions from results with messages
                    for i, output in enumerate(results):
                        for choice in output.choices:
                            current_input = deepcopy(inputs[i])
                            messages = current_input['messages']

                            if current_turn == 1 or not messages[-1]['content'] or messages[-1]['content'] == '<None>':
                                # first turn or the last message content is empty(dummy), remove the response
                                InferRequest.remove_response(messages)
                            if messages[-1]['role'] == 'assistant':
                                # If the last message was assistant, concatenate the new content to it
                                messages[-1]['content'] += choice.message.content
                            else:
                                # append a new message from the assistant
                                messages.append({'role': 'assistant', 'content': choice.message.content})

                            if 'index' not in current_input:
                                current_input['index'] = cnt
                            current_input['finish_reason'] = choice.finish_reason
                            cnt += 1
                            current_inputs.append(current_input)

                    # Process messages in the multi-turn function
                    should_stops = [
                        self.multi_turn_scheduler.check_finished(request, result.choices[0], current_turn)
                        for request, result in zip(self.inputs_to_rolloutrequest(current_inputs), results)
                    ]

                    # Retain messages that are not yet finished for the next round of rollout
                    pending_inputs = []
                    for stop, _input, result in zip(should_stops, current_inputs, results):
                        index = _input['index']
                        if stop:
                            outputs[index] = (_input['messages'], _input['finish_reason'],
                                              _input.get('multi_turn_infos', {'num_turns': 1}))
                        else:
                            current_request = self.inputs_to_rolloutrequest([_input])[0]
                            ret = self.multi_turn_scheduler.step(current_request, result.choices[0], current_turn)
                            if isinstance(ret, tuple):
                                infer_request, info_dict = ret
                            else:
                                infer_request = ret
                                info_dict = {}
                            info_dict['num_turns'] = current_turn + 1
                            pending_input = asdict(infer_request)
                            if 'multi_turn_infos' not in pending_input:
                                pending_input['multi_turn_infos'] = {}
                            for key, value in info_dict.items():
                                pending_input['multi_turn_infos'][key] = value

                            pending_input['index'] = index
                            pending_inputs.append(pending_input)

                    current_infer_inputs = pending_inputs if has_local_data else []
                    results = self._infer(current_infer_inputs, request_config)

                    inputs = pending_inputs
                    current_turn += 1
                assert not any([o is None for o in outputs])

        # flatten 2D list to 1D list
        return outputs

    def async_infer(self, all_inputs):
        current_queue = self._queue

        def infer_task():
            try:
                with self.multi_turn_completion_length_context():
                    return self._infer_single_or_multi_turn(all_inputs, self.request_config, is_global_inputs=True)
            except Exception as e:
                logger.error('Inference task failed: %s', str(e))
                raise

        future: Future = self.executor.submit(infer_task)

        # pre-fetch the queue to avoid switching back to eval_queue at the end of training sample sampling

        def done(future):
            try:
                result = future.result()
                current_queue.put(DataCache(all_inputs, result))
            except Exception as e:
                logger.error('Error in async_infer callback: %s', str(e))

        future.add_done_callback(done)

    def _prefetch(self, dataloader: DataLoader):
        inputs = next(iter(dataloader))
        all_inputs = gather_object(inputs)
        if self.state.global_step != self._last_loaded_step:
            self._move_model_to_vllm(skip_async_check=True)
            self._last_loaded_step = self.state.global_step
        outputs = self._infer_single_or_multi_turn(all_inputs, self.request_config, is_global_inputs=True)
        self._queue.put(DataCache(all_inputs, outputs))

    def _fast_infer(self, inputs: InputsType) -> Tuple[InputsType, OutputsType]:
        # Skip the first wake_up to avoid the warning "Executor is not sleeping"

        if self.vllm_mode == 'colocate' and self.args.sleep_level > 0:
            if self.engine.inner_model_executor.is_sleeping:
                # First, load weights only, https://github.com/vllm-project/vllm/pull/15500
                if 'tags' in inspect.signature(self.engine.engine.wake_up).parameters:
                    self.engine.engine.wake_up(tags=['weights'])
                else:
                    logger.info('We recommend installing vLLM >= 0.8.3, (ideally 0.8.5.post1)'
                                'to help reduce memory peaks during engine wake-up.')
                    self.engine.engine.wake_up()

        # First, have main process load weights if needed
        if self.state.global_step != self._last_loaded_step:
            self._move_model_to_vllm()
            self._last_loaded_step = self.state.global_step

        context = self.offload_context if self.enable_offload else nullcontext
        with context():
            if self.vllm_mode == 'colocate' and self.engine.inner_model_executor.is_sleeping and \
                    'tags' in inspect.signature(self.engine.engine.wake_up).parameters:
                # Load the kv_cache only after updating and offload the weights.
                self.engine.engine.wake_up(tags=['kv_cache'])

            if self.async_generate:
                # send this step data to server
                # we gather inputs outside the thread for prevent potential gather deadlock
                all_inputs = gather_object(inputs)
                self.async_infer(all_inputs)
                # cached data from last step
                data_cache = self._queue.get()
                all_inputs = data_cache.inputs
                all_outputs = gather_object(data_cache.outputs)
                process_slice = slice(
                    self.accelerator.process_index * len(inputs),
                    (self.accelerator.process_index + 1) * len(inputs),
                )
                inputs = all_inputs[process_slice]
                outputs = all_outputs[process_slice]

            else:
                with self.multi_turn_completion_length_context():
                    outputs = self._infer_single_or_multi_turn(inputs, self.request_config)

            if self.vllm_mode == 'colocate' and self.args.sleep_level > 0:
                # Reset prefix cache before sleeping to prevent using stale cache upon waking up
                # https://github.com/modelscope/ms-swift/pull/5143
                self.engine.engine.reset_prefix_cache()
                self.engine.engine.sleep(level=self.args.sleep_level)
                empty_cache()

        return inputs, outputs

    def _generate_completions(self, inputs: InputsType) -> InputsType:
        """Generate completions for given inputs using either fast inference or standard PyTorch inference.

        Args:
            inputs: List of input examples containing conversation messages.

        Returns:
            Modified inputs with generated completions added to the last message
            and truncation flag set in 'is_truncated' field.
        """
        mode = 'train' if self.model.training else 'eval'
        if self.use_fast_infer:
            inputs, outputs = self._fast_infer(inputs)
        else:
            with unwrap_model_for_generation(
                    self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
            ), self.template.generate_context(), self.multi_turn_completion_length_context():
                outputs = self._infer_single_or_multi_turn(inputs, self.request_config)
                if mode == 'train':
                    # In training mode, ensure the model is returned to train() mode after inference
                    # This is necessary as pt engines set the model to eval mode during generation
                    self.model.train()

        for i, output in enumerate(outputs):
            inputs[i]['messages'] = output[0]
            inputs[i]['is_truncated'] = output[1] == 'length'
            multi_turn_infos = output[2] if len(output) > 2 else {}
            if 'images' in multi_turn_infos:
                # override images
                inputs[i]['images'] = multi_turn_infos['images']
            inputs[i]['multi_turn_infos'] = multi_turn_infos
            if self.use_gym_env:
                inputs[i]['total_reward'] = output[2]
                inputs[i]['trajectory_info'] = output[3]

        return inputs

    def _generate_and_score_completions(self, inputs: InputsType) -> InputsType:
        if self.template.truncation_strategy == 'raise':
            inputs = self.resample_truncated_inputs(inputs)

        inputs = self._generate_completions(inputs)
        total_rewards_per_func, total_rewards, completions = self._score_completions(inputs)
        mode = 'train' if self.model.training else 'eval'

        if self.args.dynamic_sample and mode == 'train':
            # dynamic sampling for std=0 groups
            inputs, total_rewards, total_rewards_per_func, completions = \
                self._dynamic_sampling(inputs, total_rewards, total_rewards_per_func, completions)

        # Prepare final outputs with advantages and other required fields
        batch_encoded_inputs = self._prepare_batch_inputs(inputs, total_rewards)
        # Log metrics
        messages = [inputs[i]['messages'][:-1] for i in range(len(inputs))]
        trajactory_infos = None
        if self.use_gym_env:
            trajactory_infos = [inputs[i]['trajectory_info'] for i in range(len(inputs))]
        self._log_metrics(batch_encoded_inputs, messages, completions, total_rewards, total_rewards_per_func,
                          trajactory_infos)

        return batch_encoded_inputs

    def _score_completions(self, inputs: InputsType) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
        """Score completions using all reward functions

        Args:
            inputs: List of input examples, each containing a 'messages' list with conversation history

        Returns:
            Tuple containing:
            - rewards_per_func: Tensor of shape (num_examples, num_reward_funcs) with individual rewards
            - total_rewards: Tensor of shape (num_examples,) with weighted sum of rewards
            - completions: List of generated completion strings
        """
        device = self.accelerator.device
        completions = [example['messages'][-1]['content'] for example in inputs]
        # If using gym environment, extract rewards directly from inputs
        if self.use_gym_env:
            total_rewards = torch.tensor([inp['total_reward'] for inp in inputs], dtype=torch.float32, device=device)
            # For gym environment, there's only one total reward, so rewards_per_func is just total_rewards reshaped
            rewards_per_func = total_rewards.unsqueeze(1)  # shape: [num_examples, 1]
            total_rewards_per_func = gather(rewards_per_func)
            total_rewards_gathered = total_rewards_per_func.squeeze(1)  # Recover from gathered data
            return total_rewards_per_func, total_rewards_gathered, completions
        rewards_per_func = torch.zeros((len(inputs), len(self.reward_funcs)), device=device)

        for i, (reward_func, reward_model_plugin, reward_func_name) in enumerate(
                zip(self.reward_funcs, self.reward_model_plugins, self.reward_func_names)):
            with patch_profiling_context(self, reward_func_name):
                # reward model
                if isinstance(reward_func, nn.Module):
                    output_reward_func = reward_model_plugin(inputs=inputs)
                # reward function
                else:
                    # Repeat all input columns (but "messages" and "completion") to match the number of generations
                    reward_kwargs = RowPreprocessor.rows_to_batched(inputs)
                    reward_kwargs['trainer_state'] = self.state
                    output_reward_func = reward_func(completions, **reward_kwargs)
                output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]
                rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)

        # If all reward functions return None for a given row, issue a detailed warning
        if torch.isnan(rewards_per_func).all(dim=1).any():
            nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0]
            row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()}
            row_reward_kwargs['completion'] = completions[nan_row_idx]
            logger.warning(f'All reward functions returned None for the following kwargs: {row_reward_kwargs}. '
                           'Please ensure that at least one reward function returns a valid reward.')

        total_rewards_per_func = gather(rewards_per_func)
        total_rewards = (total_rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)

        return total_rewards_per_func, total_rewards, completions

    def _dynamic_sampling(self, inputs, rewards, rewards_per_func, completions):
        # DAPO https://arxiv.org/abs/2503.14476
        # Replaces samples with zero-reward-variance groups (std=0)
        resample_count = 0
        valid_samples = []
        valid_rewards = []
        valid_rewards_per_func = []
        valid_completions = []

        origin_data = (inputs, rewards, rewards_per_func, completions)

        while resample_count < self.args.max_resample_times:
            grouped_rewards = rewards.view(-1, self.num_generations)
            group_std = grouped_rewards.std(dim=1)

            valid_mask = (group_std > 0).repeat_interleave(self.num_generations)
            all_inputs = gather_object(inputs)
            valid_samples.extend([inp for inp, mask in zip(all_inputs, valid_mask) if mask])
            valid_rewards.append(rewards[valid_mask])
            valid_rewards_per_func.append(rewards_per_func[valid_mask])
            valid_completions.extend(
                [inp['messages'][-1]['content'] for inp, mask in zip(all_inputs, valid_mask) if mask])

            if len(valid_samples) >= self.args.generation_batch_size:
                break

            inputs = next(self.dynamic_resample_iterator)
            inputs = Trainer._prepare_inputs(self, inputs)
            inputs = self._generate_completions(inputs)
            rewards_per_func, rewards, completions = self._score_completions(inputs)
            resample_count += 1

        if len(valid_samples) >= self.args.generation_batch_size:
            process_slice = slice(
                self.accelerator.process_index * len(inputs),
                (self.accelerator.process_index + 1) * len(inputs),
            )
            inputs = valid_samples[:self.args.generation_batch_size][process_slice]
            rewards = torch.cat(valid_rewards)[:self.args.generation_batch_size]
            rewards_per_func = torch.cat(valid_rewards_per_func)[:self.args.generation_batch_size]
            completions = valid_completions[:self.args.generation_batch_size][process_slice]
        else:
            logger.warning(f'There are still std=0 groups present after {self.args.max_resample_times} retries.')
            inputs, rewards, rewards_per_func, completions = origin_data

        return inputs, rewards, rewards_per_func, completions

    def split_by_mini_batches(self, inputs, advantages):
        # Slice to keep only the local part of the data
        # Slice to keep only the local part of the data
        process_slice = slice(
            self.accelerator.process_index * len(inputs),
            (self.accelerator.process_index + 1) * len(inputs),
        )
        advantages = advantages[process_slice]

        mode = 'train' if self.model.training else 'eval'
        bs = self.args.per_device_train_batch_size if mode == 'train' else self.args.per_device_eval_batch_size
        spg = self.args.steps_per_generation if mode == 'train' else 1

        assert len(inputs) == bs * spg, f'Expected {bs * spg} inputs, got {len(inputs)}'
        spg_chunks = [inputs[i * bs:(i + 1) * bs] for i in range(spg)]
        # Split advantages by spg chunks
        advantage_chunks = torch.chunk(advantages, spg)
        return spg_chunks, advantage_chunks

    def _prepare_batch_inputs(self, inputs: InputsType, rewards: torch.Tensor) -> List[InputsType]:
        """
        Prepare the final batch inputs with advantages, ref/old_policy logps and other fields for RL training.

        Args:
            inputs (InputsType): List of input samples. Original shape is [spg*bs] where:
                - spg: steps_per_generation
                - bs: per-device batch size
            rewards (torch.Tensor): Tensor of global rewards corresponding to the inputs.
                Shape should match the total number of samples (spg*bs*num_processes*num_generations)

        Returns:
            List[InputsType]: A list of prepared batch inputs, organized as [spg][bs]
        """
        # Compute advantages
        grouped_rewards = rewards.view(-1, self.num_generations)
        mean_grouped_rewards = grouped_rewards.mean(dim=1).repeat_interleave(self.num_generations, dim=0)
        std_grouped_rewards = grouped_rewards.std(dim=1).repeat_interleave(self.num_generations, dim=0)

        advantages = (rewards - mean_grouped_rewards)
        if self.args.scale_rewards:
            advantages /= (std_grouped_rewards + 1e-4)
        template = self.template

        gas_chunks, advantage_chunks = self.split_by_mini_batches(inputs, advantages)
        ga_batch_encoded_inputs = []
        for i, (batch, batch_advantages) in enumerate(zip(gas_chunks, advantage_chunks)):
            # Encode and process each batch (size=bs)
            with self._template_context(template):
                batch_encoded_inputs = [template.encode(infer_request) for infer_request in batch]
                batch_encoded_inputs = to_device(template.data_collator(batch_encoded_inputs), self.model.device)

            # Process labels and masks
            labels = batch_encoded_inputs.pop('labels')
            logits_to_keep = (labels.shape[-1] - (torch.ne(labels, -100).int().argmax(-1))).max().item()
            batch_encoded_inputs.update({
                'completion_mask':
                labels[:, -logits_to_keep:] != -100,
                'truncated_mask':
                torch.tensor([b['is_truncated'] for b in batch], dtype=torch.bool),
                'logits_to_keep':
                logits_to_keep,
                'advantages':
                batch_advantages
            })

            with torch.no_grad():
                batch_encoded_inputs['old_per_token_logps'] = (
                    self._get_per_token_logps_and_entropies(self.model, batch_encoded_inputs)[0]
                    if self.old_policy() else None)

            ga_batch_encoded_inputs.append(batch_encoded_inputs)

        return ga_batch_encoded_inputs

    def _log_metrics(self, inputs, messages, completions, rewards, rewards_per_func, trajactory_infos=None):
        """Log training/evaluation metrics"""
        mode = 'train' if self.model.training else 'eval'
        device = self.accelerator.device

        # Calculate completion length metrics
        agg_completion_mask = gather(torch.cat([inp['completion_mask'].sum(1) for inp in inputs]))

        self._metrics[mode]['completions/mean_length'].append(agg_completion_mask.float().mean().item())
        self._metrics[mode]['completions/min_length'].append(agg_completion_mask.float().min().item())
        self._metrics[mode]['completions/max_length'].append(agg_completion_mask.float().max().item())
        # Calculate clip ratio
        agg_truncated_mask = gather(torch.cat([inp['truncated_mask'] for inp in inputs]).to(device))

        term_completion_mask = agg_completion_mask[agg_truncated_mask]
        clipped_completions_ratio = len(term_completion_mask) / len(agg_completion_mask)

        self._metrics[mode]['completions/clipped_ratio'].append(clipped_completions_ratio)

        for i, reward_func_name in enumerate(self.reward_func_names):
            mean_rewards = torch.nanmean(rewards_per_func[:, i]).item()
            self._metrics[mode][f'rewards/{reward_func_name}/mean'].append(mean_rewards)
            std_rewards = nanstd(rewards_per_func[:, i]).item()
            self._metrics[mode][f'rewards/{reward_func_name}/std'].append(std_rewards)

        # Log overall reward stats
        grouped_rewards = rewards.view(-1, self.num_generations)
        std_grouped_rewards = grouped_rewards.std(dim=1)
        is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards))

        self._metrics[mode]['reward'].append(grouped_rewards.mean().item())
        self._metrics[mode]['reward_std'].append(std_grouped_rewards.mean().item())
        self._metrics[mode]['frac_reward_zero_std'].append(is_std_zero.float().mean().item())

        # Log prompt and completion texts
        self._textual_logs['prompt'].extend(self._apply_chat_template_to_messages_list(gather_object(messages)))
        self._textual_logs['completion'].extend(gather_object(completions))

        if self.use_gym_env:
            self._textual_logs['trajactory_info'].extend(gather_object(trajactory_infos))

        for i, name in enumerate(self.reward_func_names):
            self._textual_logs['rewards'][name].extend(rewards_per_func[:, i].tolist())

    def _apply_chat_template_to_messages_list(self, messages_list: InputsType):
        prompts_text = []
        for messages in messages_list:
            InferRequest.remove_response(messages)
            template_inputs, _ = StdTemplateInputs.from_dict({'messages': messages})
            res_context_list, _, _ = self.template._swift_encode(template_inputs)

            # check the type and convert
            processed_context = []
            for context in res_context_list:
                if isinstance(context, str):
                    processed_context.append(context)
                elif isinstance(context, list) and all(isinstance(x, int) for x in context):
                    # decode the token ID to text
                    decoded_text = self.template.tokenizer.decode(context)
                    processed_context.append(decoded_text)
                else:
                    # other type value ,just add to process_context
                    processed_context.append(str(context))
            prompts_text.append(''.join(processed_context))
        return prompts_text

    @patch_profiling_decorator
    def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
        # Compute the per-token log probabilities for the model, return_outputs=True in mini-batch training
        if isinstance(inputs, list):
            assert len(inputs) == 1
            inputs = inputs[0]
        if self.use_liger_loss:
            unwrapped_model = self.accelerator.unwrap_model(model)
            return self._forward_redirection(model, unwrapped_model, self.compute_liger_loss, unwrapped_model, inputs)
        else:
            return self._compute_loss(model, inputs)

    def _compute_loss(self, model, inputs):
        mode = 'train' if self.model.training else 'eval'

        completion_mask = inputs['completion_mask']
        truncated_mask = inputs['truncated_mask']

        per_token_logps, entropies = self._get_per_token_logps_and_entropies(
            model, inputs, compute_entropy=self.compute_entropy)

        entropy_mask = None
        if self.compute_entropy:
            # fill the padded token with NaN
            entropies = entropies.masked_fill(completion_mask == 0, float('nan'))
            if self.args.log_entropy:
                per_completion_entropies_mean = torch.nanmean(entropies, dim=1)
                global_per_completion_entropies_mean = gather(per_completion_entropies_mean)
                self._textual_logs['entropy'].extend(global_per_completion_entropies_mean.tolist())
                self._metrics[mode]['entropy/mean'].append(global_per_completion_entropies_mean.mean().item())
                self._metrics[mode]['entropy/max'].append(global_per_completion_entropies_mean.max().item())
                self._metrics[mode]['entropy/min'].append(global_per_completion_entropies_mean.min().item())

            # compute the entropy threshold across all tokens in the batch
            if self.args.top_entropy_quantile < 1.0:
                entropy_threshold = torch.nanquantile(entropies.flatten().float(), 1 - self.top_entropy_quantile)
                self._metrics[mode]['entropy/threshold'].append(entropy_threshold.item())
                entropy_mask = entropies >= entropy_threshold

        # apply the completion_mask to exclude loss and metrics for overlong completions
        if self.args.overlong_filter and any(truncated_mask):
            if all(truncated_mask):
                logger.info('All completions are overlong and truncated, '
                            'resulting in NaN some values for some metrics (e.g., KL)')
            truncated_mask = truncated_mask.unsqueeze(-1).expand_as(completion_mask).to(completion_mask.device)
            completion_mask = completion_mask * (~truncated_mask)

        # Compute the KL divergence between the model and the reference model
        if self.beta != 0.0:
            with torch.no_grad():
                if self.ref_model is not None:
                    ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(self.ref_model, inputs)
                else:
                    with self.accelerator.unwrap_model(self.model).disable_adapter():
                        ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(self.model, inputs)

            per_token_kl = (
                torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1)

        advantages = inputs['advantages']
        # When under on-policy training
        # old_per_token_logps == per_token_logps, so we can skip it's computation
        # (see _generate_and_score_completions) and use per_token_logps.detach() instead.
        old_per_token_logps = (
            per_token_logps.detach() if inputs['old_per_token_logps'] is None else inputs['old_per_token_logps'])

        log_ratio = per_token_logps - old_per_token_logps
        if self.importance_sampling_level == 'token':
            log_importance_weights = log_ratio
        elif self.importance_sampling_level == 'sequence':
            log_importance_weights = (log_ratio * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)
            log_importance_weights = log_importance_weights.unsqueeze(-1)
        else:
            raise ValueError(
                f"Unknown importance sampling level: {self.importance_sampling_level}. Possible values are 'token' "
                "and 'sequence'.")
        # From here, log_importance_weights (and all subsequent tensors, coef_1, coef_2, etc.) shape depends on
        # importance_sampling_level: "token" level: (B, T); "sequence" level: (B, 1)

        coef_1 = torch.exp(log_importance_weights)
        coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)
        if self.args.delta is not None:
            coef_1 = torch.clamp(coef_1, max=self.args.delta)

        per_token_loss1 = coef_1 * advantages.unsqueeze(1)
        per_token_loss2 = coef_2 * advantages.unsqueeze(1)
        per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
        if entropy_mask is not None:
            per_token_loss = per_token_loss * entropy_mask
        if self.beta != 0.0:
            per_token_loss = per_token_loss + self.beta * per_token_kl

        if self.loss_type == 'grpo':
            loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean()
        elif self.loss_type == 'bnpo':
            loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0)
        elif self.loss_type == 'dr_grpo':
            loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length)
        else:
            raise ValueError(f'Unknown loss type: {self.loss_type}')

        completion_token_count = completion_mask.sum().clamp(min=1.0)

        def masked_batch_mean(x):
            if x.shape[1] == 1:  # when importance_sampling_level == "sequence"
                return x.mean()
            else:
                return (x * completion_mask).sum() / completion_token_count

        if self.beta != 0.0:
            mean_kl = masked_batch_mean(per_token_kl)
            self._metrics[mode]['kl'].append(self.accelerator.gather_for_metrics(mean_kl).nanmean().item())

        # Compute the clipped probability ratios
        is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
        is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
        is_region_clipped = is_low_clipped | is_high_clipped

        low_clip = masked_batch_mean(is_low_clipped.float())
        high_clip = masked_batch_mean(is_high_clipped.float())
        clip_ratio = masked_batch_mean(is_region_clipped.float())

        gathered_low_clip = self.accelerator.gather_for_metrics(low_clip)
        self._metrics[mode]['clip_ratio/low_mean'].append(gathered_low_clip.nanmean().item())
        self._metrics[mode]['clip_ratio/low_min'].append(nanmin(gathered_low_clip).item())
        gathered_high_clip = self.accelerator.gather_for_metrics(high_clip)
        self._metrics[mode]['clip_ratio/high_mean'].append(gathered_high_clip.nanmean().item())
        self._metrics[mode]['clip_ratio/high_max'].append(nanmax(gathered_high_clip).item())
        gathered_clip_ratio = self.accelerator.gather_for_metrics(clip_ratio)
        self._metrics[mode]['clip_ratio/region_mean'].append(gathered_clip_ratio.nanmean().item())

        return loss

    @contextmanager
    def padding_free_context(self, model: torch.nn.Module):
        ctx = {}

        def _padding_free_input_hook(module, args, kwargs):
            attention_mask = kwargs['attention_mask']
            # used in _padding_free_output_hook
            ctx['padding_left'] = (attention_mask[:, -1].sum() == attention_mask.shape[0])
            if 'input_ids' in kwargs and kwargs.get('input_ids') is not None:
                # llm models
                kwargs['position_ids'] = torch.arange(kwargs['input_ids'].shape[1]).unsqueeze(0).repeat(
                    kwargs['input_ids'].shape[0], 1).to(kwargs['input_ids'].dtype).to(kwargs['input_ids'].device)
                kwargs['input_ids'] = kwargs['input_ids'][attention_mask.bool()].unsqueeze(0)
            else:
                # mllm models
                kwargs['position_ids'] = torch.arange(kwargs['inputs_embeds'].shape[1]).unsqueeze(0).repeat(
                    kwargs['inputs_embeds'].shape[0], 1).to(torch.int64).to(kwargs['inputs_embeds'].device)
                kwargs['inputs_embeds'] = kwargs['inputs_embeds'][attention_mask.bool()].unsqueeze(0)
            kwargs['position_ids'] = kwargs['position_ids'][attention_mask.bool()].unsqueeze(0)
            kwargs.pop('attention_mask', None)
            return args, kwargs

        def _padding_free_output_hook(module, args, kwargs, result):
            position_ids = kwargs['position_ids']
            seq_lengths = []
            pos = position_ids[0]
            resets = torch.where(pos[1:] < pos[:-1])[0] + 1

            if len(resets) == 0:
                # Only one sequence in this batch item
                seq_lengths = [pos.max().item() + 1]
            else:
                # Multiple sequences
                start = 0
                for end in resets:
                    seq_lengths.append(end - start)
                    start = end
                seq_lengths.append(pos.shape[0] - start)

            max_length = max(seq_lengths)
            last_hidden_state = result.last_hidden_state.squeeze(0)
            unpacked_logits = []

            start = 0
            for length in seq_lengths:
                seq_state = last_hidden_state[start:start + length]
                padding = torch.zeros(
                    (max_length - length,
                     last_hidden_state.shape[-1])).to(last_hidden_state.dtype).to(last_hidden_state.device)
                # re-padding
                if ctx['padding_left']:
                    seq_state = torch.cat((padding, seq_state), dim=0)
                else:
                    seq_state = torch.cat((seq_state, padding), dim=0)
                unpacked_logits.append(seq_state)
                start += length
            result.last_hidden_state = torch.stack(unpacked_logits, dim=0)
            return result

        if self.padding_free:
            llm_model = get_llm_model(model)
            if hasattr(llm_model, 'thinker'):
                base_model = llm_model.thinker.model
            else:
                base_model = llm_model.model
            remove_handle1 = base_model.register_forward_pre_hook(
                _padding_free_input_hook, with_kwargs=True, prepend=True)
            remove_handle2 = base_model.register_forward_hook(_padding_free_output_hook, with_kwargs=True, prepend=True)
        yield
        if self.padding_free:
            remove_handle1.remove()
            remove_handle2.remove()

    @patch_profiling_decorator
    def _get_per_token_logps_and_entropies(self,
                                           model,
                                           inputs,
                                           compute_entropy=False) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits_to_keep = inputs['logits_to_keep']
        input_ids = inputs['input_ids']
        unwrapped_model = self.accelerator.unwrap_model(model)
        if is_peft_model(unwrapped_model):
            parameters = inspect.signature(unwrapped_model.base_model.model.forward).parameters
        else:
            parameters = inspect.signature(unwrapped_model.forward).parameters
        use_local_entropy = not hasattr(super(), '_get_per_token_logps_and_entropies') and compute_entropy

        can_use_super = (not unwrapped_model.model_meta.is_multimodal and 'logits_to_keep' in parameters
                         and not use_local_entropy)

        if can_use_super:
            # save memory
            with self.padding_free_context(model):
                if hasattr(super(), '_get_per_token_logps_and_entropies'):
                    logps, entropies = super()._get_per_token_logps_and_entropies(
                        model, input_ids, inputs['attention_mask'], logits_to_keep, compute_entropy=compute_entropy)
                else:
                    logps = super()._get_per_token_logps(model, input_ids, inputs['attention_mask'], logits_to_keep)
                    entropies = None
        else:
            inputs = {
                k: v
                for k, v in inputs.items() if k not in [
                    'logits_to_keep', 'completion_mask', 'ref_per_token_logps', 'advantages', 'old_per_token_logps',
                    'truncated_mask'
                ]
            }

            with self._template_context(self.template), self.padding_free_context(model):
                logits = model(**inputs).logits
            # exclude the last logit: it corresponds to the next token pred
            logits = logits[:, -(logits_to_keep + 1):-1, :]
            logits = logits / self.temperature
            input_ids = input_ids[:, -logits_to_keep:]
            logps = selective_log_softmax(logits, input_ids)  # compute logprobs for the input tokens
            entropies = None
            if compute_entropy:
                entropies = entropy_from_logits(logits)

        return logps, entropies

    @patch_profiling_decorator
    def _get_last_hidden_state(self, unwrapped_model, inputs, logits_to_keep):
        # unwrap the model to access the model.model
        if is_peft_model(unwrapped_model):
            unwrapped_model = unwrapped_model.base_model.model
        if not unwrapped_model.model_meta.is_multimodal:
            last_hidden_state = unwrapped_model.model(
                input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']).last_hidden_state
        else:
            inputs = {
                k: v
                for k, v in inputs.items() if k not in [
                    'logits_to_keep', 'completion_mask', 'ref_per_token_logps', 'advantages', 'old_per_token_logps',
                    'truncated_mask'
                ]
            }
            with self._template_context(self.template):
                outputs = unwrapped_model(**inputs, output_hidden_states=True)
                last_hidden_state = outputs.hidden_states[-1]

        last_hidden_state = last_hidden_state[:, :-1, :]  # (B, L-1, H)
        if logits_to_keep is not None:
            last_hidden_state = last_hidden_state[:, -logits_to_keep:, :]  # (B, logits_to_keep, H)
        return last_hidden_state

    def compute_liger_loss(self, unwrapped_model, inputs):
        # Compute the per-token log probabilities for the model
        input_ids = inputs['input_ids']
        logits_to_keep = inputs['logits_to_keep']
        completion_ids = input_ids[:, -logits_to_keep:]
        completion_mask = inputs['completion_mask']

        # Compute the KL divergence between the model and the reference model
        ref_per_token_logps = None
        if self.beta != 0.0:
            with torch.no_grad():
                if self.ref_model is not None:
                    ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(self.ref_model, inputs)
                else:
                    with self.accelerator.unwrap_model(self.model).disable_adapter():
                        ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(self.model, inputs)

        # get the last hidden state of the model
        last_hidden_state = self._get_last_hidden_state(unwrapped_model, inputs, logits_to_keep)
        # compute loss and metrics using liger grpo loss
        loss, metrics = self.liger_grpo_loss(
            _input=last_hidden_state,
            lin_weight=unwrapped_model.lm_head.weight,
            selected_token_ids=completion_ids,
            attention_mask=completion_mask,
            advantages=inputs['advantages'],
            bias=unwrapped_model.lm_head.bias,
            old_per_token_logps=inputs['old_per_token_logps'],
            ref_per_token_logps=ref_per_token_logps,
        )
        # Extract metrics from the liger_grpo_loss output
        # KL divergence is the first metric when beta is non-zero
        mean_kl = metrics[0] if self.beta != 0.0 else None
        clip_ratio = metrics[-1]

        mode = 'eval' if self.control.should_evaluate else 'train'
        if self.beta != 0.0:
            self._metrics[mode]['kl'].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
        self._metrics[mode]['clip_ratio'].append(self.accelerator.gather_for_metrics(clip_ratio).mean().item())
        return loss

    def evaluation_loop(self, dataloader, *args, **kwargs):
        # Wait for the training rollout to complete
        if self.args.async_generate:
            while not self.is_async_generate_train_rollout_done():
                time.sleep(0.1)
        if self._queue.empty() and self.args.async_generate:
            self._prefetch(dataloader)
        metric_key_prefix = kwargs['metric_key_prefix']
        output = super().evaluation_loop(dataloader, *args, **kwargs)
        metrics = {f'{metric_key_prefix}_{key}': sum(val) / len(val) for key, val in self._metrics['eval'].items()}
        output.metrics.update(metrics)
        self.eval_flag = True
        return output

    def training_step(self, model: nn.Module, inputs: InputsType, num_items_in_batch=None) -> torch.Tensor:
        if self.args.async_generate:
            # Wait for the eval rollout to complete
            while not self.is_async_generate_eval_rollout_done():
                time.sleep(0.1)
        return super().training_step(model, inputs, num_items_in_batch)

    def _engine_infer(
        self,
        infer_requests: InputsType,
        request_config: Optional[RequestConfig] = None,
        *,
        use_tqdm: Optional[bool] = False,
    ) -> List[ChatCompletionResponse]:
        with patch_profiling_context(self, 'generate'):
            if self.vllm_mode == 'server':
                request_keys = ['messages', 'images', 'audios', 'videos', 'tools', 'objects']

                infer_requests = [{
                    **{k: request[k]
                       for k in request_keys if k in request},
                    **({
                        'data_dict': {k: request[k]
                                      for k in request if k not in request_keys}
                    } if (
                        (self.multi_turn_scheduler and self.vllm_use_async_engine) or
                        (self.vllm_use_async_engine and self.use_gym_env)
                    ) else {})  # use gym infer
                } for request in infer_requests]

                self._process_infer_requests_images(infer_requests)
                return self.vllm_client.infer(infer_requests, asdict(request_config), use_tqdm=use_tqdm)
            else:
                return self.engine.infer(infer_requests, request_config, use_tqdm=use_tqdm)

    def _process_infer_requests_images(self, infer_requests: InputsType):
        # Process image format into a format that session.post can accept
        import base64
        if not any('images' in request for request in infer_requests):
            return
        for request in infer_requests:
            if 'images' not in request:
                continue
            for i, img in enumerate(request['images']):
                if 'bytes' in img and img['bytes']:
                    request['images'][i] = base64.b64encode(img['bytes']).decode('utf-8')
                elif 'path' in img and img['path']:
                    request['images'][i] = img['path']
        return

    def old_policy(self):
        return self.num_iterations > 1 or self.args.gradient_accumulation_steps % self.args.steps_per_generation != 0

    @property
    def _queue(self):
        if self.control.should_evaluate:
            return self.eval_queue
        else:
            return self.train_queue

    @torch.no_grad()
    def offload_model(self, model):
        for param in model.parameters():
            param.data = param.data.to(torch.device('cpu'), non_blocking=True)

    @torch.no_grad()
    def load_model(self, model):
        device = get_current_device()
        for param in model.parameters():
            param.data = param.data.to(device, non_blocking=True)

    @torch.no_grad()
    def offload_optimizer(self):
        if not self.optimizer.state:
            return
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                state = self.optimizer.state[param]
                for key, value in state.items():
                    if isinstance(value, torch.Tensor):
                        state[key] = value.to('cpu', non_blocking=True)

    @torch.no_grad()
    def load_optimizer(self):
        device = get_current_device()
        if not self.optimizer.state:
            return
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                state = self.optimizer.state[param]
                for key, value in state.items():
                    if isinstance(value, torch.Tensor):
                        state[key] = value.to(device, non_blocking=True)

    @contextmanager
    def multi_turn_completion_length_context(self):
        """
        Context manager that temporarily adjusts the engine's max length handling
        for multi-turn generation scenarios.

        Ensures the total sequence length (prompt + completion) never exceeds:
            min(original_max_len, prompt_tokens + max_completion_length)
        """
        if not (self.multi_turn_scheduler and
                self.use_fast_infer) or self.vllm_mode == 'server' or self.completion_length_limit_scope == 'per_round':
            yield
            return

        original_fn = self.engine.set_default_max_tokens
        original_max_len = self.engine.max_model_len

        def set_default_max_tokens(_self, request_config: RequestConfig, inputs: Dict[str, Any]) -> None:
            # Calculate required context window
            original_max_len = _self.max_model_len or 8192
            assert isinstance(inputs, dict)
            prompt_tokens = _self._get_num_tokens(inputs)

            if not hasattr(_self, 'set_grpo_max_model_len'):
                # set max model len in first round
                max_len = min(original_max_len, prompt_tokens + request_config.max_tokens)
                _self.max_model_len = max_len
                _self.set_grpo_max_model_len = True
            else:
                if _self.max_model_len <= prompt_tokens:
                    # modify max_model_len > prompt_tokens to avoid crash
                    num_tokens_avoid_crash = 10
                    _self.max_model_len = (prompt_tokens + num_tokens_avoid_crash)
                    request_config.max_tokens = num_tokens_avoid_crash

            original_fn(request_config, inputs)

        try:
            self.engine.set_default_max_tokens = MethodType(set_default_max_tokens, self.engine)
            yield
        finally:
            self.engine.set_default_max_tokens = original_fn
            self.engine.max_model_len = original_max_len
            del self.engine.set_grpo_max_model_len

    def resample_truncated_inputs(self, inputs: InputsType, n_try_fetch: int = 10) -> InputsType:
        template = self.template
        for i, data in enumerate(inputs):
            n_try = 0
            while True:
                try:
                    template.encode(data)
                    inputs[i] = data
                    break
                except MaxLengthError:
                    n_try += 1
                    if n_try > n_try_fetch:
                        raise RuntimeError('Failed to resample a valid data.',
                                           'You can avoid this issue by increasing `max_length` or ',
                                           'modifying the `truncation_strategy`.')
                    data = next(self.truncated_resample_iterator)[0]
        return inputs

    def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
        mode = 'train' if self.model.training else 'eval'
        metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()}  # average the metrics

        # This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
        # start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
        if mode == 'eval':
            metrics = {f'eval_{key}': val for key, val in metrics.items()}

        logs = {**logs, **metrics}
        if version.parse(transformers.__version__) >= version.parse('4.47.0.dev0'):
            super().log(logs, start_time)
        else:  # transformers<=4.46
            super().log(logs)
        self._metrics[mode].clear()

        # - entropy only includes samples that went through training (computed in _compute_loss)
        # - Other fields (e.g., prompt/completion/reward) are collected from rollout (in _prepare_inputs)
        # Therefore, if entropy exists, to ensure length consistency across fields,
        # we align all data based on the number of samples in entropy.
        seen_nums = len(self._textual_logs['entropy']) \
            if 'entropy' in self._textual_logs else len(self._textual_logs['prompt'])
        if self.accelerator.is_main_process and self.log_completions:
            table = {
                'step': [str(self.state.global_step)] * seen_nums,
                'prompt': list(self._textual_logs['prompt'])[:seen_nums],
                'completion': list(self._textual_logs['completion'])[:seen_nums],
                **{k: list(v)[:seen_nums]
                   for k, v in self._textual_logs['rewards'].items()},
            }
            if self.use_gym_env:
                table['trajactory_info'] = self._textual_logs['trajactory_info']
            if self.args.log_entropy:
                table.update({'entropy': self._textual_logs['entropy']})
            self.jsonl_writer.append(table)
            if self.args.report_to and 'wandb' in self.args.report_to and wandb.run is not None:
                import pandas as pd
                df = pd.DataFrame(table)
                if self.wandb_log_unique_prompts:
                    df = df.drop_duplicates(subset=['prompt'])
                wandb.log({'completions': wandb.Table(dataframe=df)})

            if self.args.report_to and 'swanlab' in self.args.report_to and swanlab.get_run() is not None:
                headers = list(table.keys())
                rows = []
                for i in range(len(table['step'])):
                    row = []
                    for header in headers:
                        row.append(table[header][i])
                    rows.append(row)
                swanlab.log({'completions': swanlab.echarts.Table().add(headers, rows)})

    def is_async_generate_eval_rollout_done(self):
        return not self.eval_flag or not self.eval_queue.empty()

    def is_async_generate_train_rollout_done(self):
        return not self.train_queue.empty()

    def inputs_to_rolloutrequest(self, inputs: InputsType) -> List[RolloutInferRequest]:
        """Convert a list of inputs to a list of RolloutInferRequest objects

        If the input contains a 'data_dict' key, it will be used as the base for the new data_dict.
        For other keys, if they overlap with keys in data_dict, the values from data_dict will be used.
        Non-overlapping keys will be added to data_dict.

        Args:
            inputs: List of input dictionaries

        Returns:
            List of RolloutInferRequest objects
        """
        request_keys = ['messages', 'images', 'audios', 'videos', 'tools', 'objects']
        infer_requests = []

        for request in inputs:
            # Get the base data_dict if it exists in the input
            base_data_dict = {}
            if 'data_dict' in request:
                if isinstance(request['data_dict'], dict):
                    base_data_dict = request['data_dict']
                else:
                    raise ValueError('data_dict exists but is not a dictionary')

            # Collect all non-request_keys items as extra fields
            extra_data = {k: request[k] for k in request if k not in request_keys and k != 'data_dict'}

            # Merge the data_dict, keeping keys from base_data_dict as priority
            final_data_dict = {**extra_data, **base_data_dict}

            # Create RolloutInferRequest instance
            req_args = {k: request[k] for k in request_keys if k in request}
            infer_requests.append(RolloutInferRequest(**req_args, data_dict=final_data_dict))

        return infer_requests

    @contextmanager
    def offload_context(self):
        if self.args.offload_model:
            self.offload_model(self.accelerator.unwrap_model(self.model))
            if self.ref_model:
                self.offload_model(self.ref_model)
        if getattr(self, 'optimizer', None) and self.args.offload_optimizer:
            self.offload_optimizer()
        empty_cache()

        try:
            yield
        finally:
            # reload (load back) model when exiting context
            if self.args.offload_model:
                self.load_model(self.accelerator.unwrap_model(self.model))
                if self.ref_model:
                    self.load_model(self.ref_model)
            if getattr(self, 'optimizer', None) and self.args.offload_optimizer:
                self.load_optimizer()
            empty_cache()