File size: 33,463 Bytes
96fe658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
Metadata-Version: 2.4
Name: ms_swift
Version: 3.7.0.dev0
Summary: Swift: Scalable lightWeight Infrastructure for Fine-Tuning
Home-page: https://github.com/modelscope/swift
Author: DAMO ModelScope teams
Author-email: contact@modelscope.cn
License: Apache License 2.0
Keywords: python,petl,efficient tuners
Classifier: Development Status :: 4 - Beta
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: accelerate
Requires-Dist: addict
Requires-Dist: aiohttp
Requires-Dist: attrdict
Requires-Dist: binpacking
Requires-Dist: charset_normalizer
Requires-Dist: cpm_kernels
Requires-Dist: dacite
Requires-Dist: datasets<3.4,>=3.0
Requires-Dist: einops
Requires-Dist: fastapi
Requires-Dist: gradio>=3.40.0
Requires-Dist: importlib_metadata
Requires-Dist: jieba
Requires-Dist: matplotlib
Requires-Dist: modelscope>=1.23
Requires-Dist: nltk
Requires-Dist: numpy<2.0
Requires-Dist: openai
Requires-Dist: oss2
Requires-Dist: pandas
Requires-Dist: peft<0.17,>=0.11
Requires-Dist: pillow
Requires-Dist: requests
Requires-Dist: rouge
Requires-Dist: safetensors
Requires-Dist: scipy
Requires-Dist: sentencepiece
Requires-Dist: simplejson>=3.3.0
Requires-Dist: sortedcontainers>=1.5.9
Requires-Dist: tensorboard
Requires-Dist: tiktoken
Requires-Dist: tqdm
Requires-Dist: transformers<4.54,>=4.33
Requires-Dist: transformers_stream_generator
Requires-Dist: trl<0.20,>=0.15
Requires-Dist: uvicorn
Requires-Dist: zstandard
Provides-Extra: eval
Requires-Dist: datasets==3.2.0; extra == "eval"
Requires-Dist: evalscope>=0.16; extra == "eval"
Requires-Dist: evalscope[opencompass]; extra == "eval"
Requires-Dist: evalscope[vlmeval]; extra == "eval"
Provides-Extra: swanlab
Requires-Dist: swanlab; extra == "swanlab"
Provides-Extra: seq-parallel
Requires-Dist: xtuner; extra == "seq-parallel"
Provides-Extra: all
Requires-Dist: accelerate; extra == "all"
Requires-Dist: addict; extra == "all"
Requires-Dist: aiohttp; extra == "all"
Requires-Dist: attrdict; extra == "all"
Requires-Dist: binpacking; extra == "all"
Requires-Dist: charset_normalizer; extra == "all"
Requires-Dist: cpm_kernels; extra == "all"
Requires-Dist: dacite; extra == "all"
Requires-Dist: datasets<3.4,>=3.0; extra == "all"
Requires-Dist: einops; extra == "all"
Requires-Dist: fastapi; extra == "all"
Requires-Dist: gradio>=3.40.0; extra == "all"
Requires-Dist: importlib_metadata; extra == "all"
Requires-Dist: jieba; extra == "all"
Requires-Dist: matplotlib; extra == "all"
Requires-Dist: modelscope>=1.23; extra == "all"
Requires-Dist: nltk; extra == "all"
Requires-Dist: numpy<2.0; extra == "all"
Requires-Dist: openai; extra == "all"
Requires-Dist: oss2; extra == "all"
Requires-Dist: pandas; extra == "all"
Requires-Dist: peft<0.17,>=0.11; extra == "all"
Requires-Dist: pillow; extra == "all"
Requires-Dist: requests; extra == "all"
Requires-Dist: rouge; extra == "all"
Requires-Dist: safetensors; extra == "all"
Requires-Dist: scipy; extra == "all"
Requires-Dist: sentencepiece; extra == "all"
Requires-Dist: simplejson>=3.3.0; extra == "all"
Requires-Dist: sortedcontainers>=1.5.9; extra == "all"
Requires-Dist: tensorboard; extra == "all"
Requires-Dist: tiktoken; extra == "all"
Requires-Dist: tqdm; extra == "all"
Requires-Dist: transformers<4.54,>=4.33; extra == "all"
Requires-Dist: transformers_stream_generator; extra == "all"
Requires-Dist: trl<0.20,>=0.15; extra == "all"
Requires-Dist: uvicorn; extra == "all"
Requires-Dist: zstandard; extra == "all"
Requires-Dist: datasets==3.2.0; extra == "all"
Requires-Dist: evalscope>=0.16; extra == "all"
Requires-Dist: evalscope[opencompass]; extra == "all"
Requires-Dist: evalscope[vlmeval]; extra == "all"
Requires-Dist: xtuner; extra == "all"
Requires-Dist: swanlab; extra == "all"
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: description-content-type
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: license-file
Dynamic: provides-extra
Dynamic: requires-dist
Dynamic: summary
# SWIFT (Scalable lightWeight Infrastructure for Fine-Tuning)
<p align="center">
<br>
<img src="asset/banner.png"/>
<br>
<p>
<p align="center">
<a href="https://modelscope.cn/home">ModelScope Community Website</a>
<br>
<a href="README_CN.md">δΈζ</a>   ο½   English  
</p>
<p align="center">
<img src="https://img.shields.io/badge/python-3.10-5be.svg">
<img src="https://img.shields.io/badge/pytorch-%E2%89%A52.0-orange.svg">
<a href="https://github.com/modelscope/modelscope/"><img src="https://img.shields.io/badge/modelscope-%E2%89%A51.19-5D91D4.svg"></a>
<a href="https://pypi.org/project/ms-swift/"><img src="https://badge.fury.io/py/ms-swift.svg"></a>
<a href="https://github.com/modelscope/ms-swift/blob/main/LICENSE"><img src="https://img.shields.io/github/license/modelscope/ms-swift"></a>
<a href="https://pepy.tech/project/ms-swift"><img src="https://pepy.tech/badge/ms-swift"></a>
<a href="https://github.com/modelscope/ms-swift/pulls"><img src="https://img.shields.io/badge/PR-welcome-55EB99.svg"></a>
</p>
<p align="center">
<a href="https://trendshift.io/repositories/6427" target="_blank"><img src="https://trendshift.io/api/badge/repositories/6427" alt="modelscope%2Fswift | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
<p align="center">
<a href="https://arxiv.org/abs/2408.05517">Paper</a>   ο½ <a href="https://swift.readthedocs.io/en/latest/">English Documentation</a>   ο½   <a href="https://swift.readthedocs.io/zh-cn/latest/">δΈζζζ‘£</a>  
</p>
## π Table of Contents
- [Groups](#-Groups)
- [Introduction](#-introduction)
- [News](#-news)
- [Installation](#%EF%B8%8F-installation)
- [Quick Start](#-quick-Start)
- [Usage](#-Usage)
- [License](#-License)
- [Citation](#-citation)
## β Groups
You can contact us and communicate with us by adding our group:
[Discord Group](https://discord.com/invite/D27yfEFVz5) | WeChat Group
:-------------------------:|:-------------------------:
<img src="asset/discord_qr.jpg" width="200" height="200"> | <img src="asset/wechat.png" width="200" height="200">
## π Introduction
π² ms-swift is an official framework provided by the ModelScope community for fine-tuning and deploying large language models and multi-modal large models. It currently supports the training (pre-training, fine-tuning, human alignment), inference, evaluation, quantization, and deployment of 500+ large models and 200+ multi-modal large models. These large language models (LLMs) include models such as Qwen3, Qwen3-MoE, Qwen2.5, InternLM3, GLM4, Mistral, DeepSeek-R1, Yi1.5, TeleChat2, Baichuan2, and Gemma2. The multi-modal LLMs include models such as Qwen2.5-VL, Qwen2-Audio, Llama4, Llava, InternVL3, MiniCPM-V-2.6, GLM4v, Xcomposer2.5, Yi-VL, DeepSeek-VL2, Phi3.5-Vision, and GOT-OCR2.
π Additionally, ms-swift incorporates the latest training technologies, including lightweight techniques such as LoRA, QLoRA, Llama-Pro, LongLoRA, GaLore, Q-GaLore, LoRA+, LISA, DoRA, FourierFt, ReFT, UnSloth, and Liger, as well as human alignment training methods like DPO, GRPO, RM, PPO, GKD, KTO, CPO, SimPO, and ORPO. ms-swift supports acceleration of inference, evaluation, and deployment modules using vLLM, SGLang and LMDeploy, and it supports model quantization with technologies like GPTQ, AWQ, and BNB. Furthermore, ms-swift offers a Gradio-based Web UI and a wealth of best practices.
**Why choose ms-swift?**
- π **Model Types**: Supports 500+ pure text large models, **200+ multi-modal large models**, as well as All-to-All multi-modal models, sequence classification models, and embedding models, **covering the entire process from training to deployment**.
- **Dataset Types**: Comes with 150+ pre-training, fine-tuning, human alignment, multi-modal datasets, and supports custom datasets.
- **Hardware Support**: Compatible with CPU, RTX series, T4/V100, A10/A100/H100, Ascend NPU, MPS, etc.
- **Lightweight Training**: Supports lightweight fine-tuning methods like LoRA, QLoRA, DoRA, LoRA+, ReFT, RS-LoRA, LLaMAPro, Adapter, GaLore, Q-Galore, LISA, UnSloth, Liger-Kernel.
- **Distributed Training**: Supports distributed data parallel (DDP), device_map simple model parallelism, DeepSpeed ZeRO2/ZeRO3, FSDP, Megatron, and other distributed training techniques.
- **Quantization Training**: Supports training quantized models like BNB, AWQ, GPTQ, AQLM, HQQ, EETQ.
- π **RLHF Training**: Supports human alignment training methods such as DPO, GRPO, RM, PPO, GKD, KTO, CPO, SimPO, ORPO for both pure text and multi-modal large models.
- π **Multi-Modal Training**: Supports training on different modalities like images, videos, and audio, for tasks like VQA, captioning, OCR, and grounding.
- π₯₯ **Megatron Parallelism**: Supports accelerating CPT/SFT/DPO using Megatron parallelism techniques, currently compatible with 200+ large language models.
- **Interface Training**: Provides capabilities for training, inference, evaluation, quantization through an interface, completing the whole large model pipeline.
- **Plugin and Extension**: Supports custom model and dataset extensions, as well as customization of components like loss, metric, trainer, loss-scale, callback, optimizer.
- π **Toolbox Capabilities**: Offers not only training support for large models and multi-modal large models but also covers the entire process of inference, evaluation, quantization, and deployment.
- **Inference Acceleration**: Supports inference acceleration engines like PyTorch, vLLM, SGLang, LmDeploy, and provides OpenAI API for accelerating inference, deployment, and evaluation modules.
- **Model Evaluation**: Uses EvalScope as the evaluation backend and supports evaluation on 100+ datasets for both pure text and multi-modal models.
- **Model Quantization**: Supports AWQ, GPTQ, FP8, and BNB quantized exports, with models that can use vLLM/SGLang/LmDeploy for inference acceleration and continue training.
## π News
- π 2025.07.12: Deployment(pt/vLLM/SGLang) of Embedding models is supported, check [here](examples/deploy/embedding/client.py).
- π 2025.07.09: Megatron-SWIFT supports LoRA training. Compared to ms-swift, it achieves significant speedup on MoE models. Training scripts can be found [here](https://github.com/modelscope/ms-swift/blob/main/examples/train/megatron/lora).
- π 2025.06.23: Fine-tuning of reranker models is supported. Training scripts can be found here: [Reranker](https://github.com/modelscope/ms-swift/blob/main/examples/train/reranker/train_reranker.sh).
- π 2025.06.18: Support for accelerating the ms-swift [inference](https://github.com/modelscope/ms-swift/blob/main/examples/infer/sglang), deployment, evaluation, and UI modules using the [sglang](https://github.com/sgl-project/sglang) inference acceleration engine. Simply set `--infer_backend sglang` to enable it.
- π 2025.06.15: Support for GKD training on both pure text large models and multimodal models. Training scripts can be found here: [Pure Text](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/gkd), [Multimodal](https://github.com/modelscope/ms-swift/blob/main/examples/train/multimodal/rlhf/gkd).
- π 2025.06.11: Support for using Megatron parallelism techniques for RLHF training. The training script can be found [here](https://github.com/modelscope/ms-swift/tree/main/examples/train/megatron/rlhf).
- π 2025.05.29: Support sequence parallel in pt, sft, dpo and grpo, check script [here](https://github.com/modelscope/ms-swift/tree/main/examples/train/long_text).
- π 2025.05.11: GRPO now supports custom processing logic for reward models. See the GenRM example [here](./docs/source_en/Instruction/GRPO/DeveloperGuide/reward_model.md).
- π 2025.04.15: The ms-swift paper has been accepted by AAAI 2025. You can find the paper at [this link](https://ojs.aaai.org/index.php/AAAI/article/view/35383).
- π 2025.03.23: Multi-round GRPO is now supported for training multi-turn dialogue scenarios (e.g., agent tool calling). Please refer to the [doc](./docs/source_en/Instruction/GRPO/DeveloperGuide/multi_turn.md).
- π 2025.03.16: Support for Megatron's parallel training techniques is now available. Please see the [Megatron-SWIFT training documentation](https://swift.readthedocs.io/en/latest/Instruction/Megatron-SWIFT-Training.html).
- π 2025.03.15: Fine-tuning of embedding models for both pure text and multimodal models is supported. Please check the [training script](examples/train/embedding).
- π 2025.03.05: The hybrid mode for GRPO is supported, with a script for training a 72B model on 4 GPUs (4*80G) available [here](examples/train/grpo/internal/vllm_72b_4gpu.sh). Tensor parallelism with vllm is also supported, with the training script available [here](examples/train/grpo/internal).
- π 2025.02.21: The GRPO algorithm now supports LMDeploy, with the training script available [here](examples/train/grpo/internal/full_lmdeploy.sh). Additionally, the performance of the GRPO algorithm has been tested, achieving a training speed increase of up to 300% using various tricks. Please check the WanDB table [here](https://wandb.ai/tastelikefeet/grpo_perf_test?nw=nwuseryuzezyz).
- π 2025.02.21: The `swift sample` command is now supported. The reinforcement fine-tuning script can be found [here](docs/source_en/Instruction/Reinforced-Fine-tuning.md), and the large model API distillation sampling script is available [here](examples/sampler/distill/distill.sh).
- π₯ 2025.02.12: Support for the GRPO (Group Relative Policy Optimization) training algorithm has been added. Documentation is available [here](docs/source_en/Instruction/GRPO/GetStarted/GRPO.md).
- π 2024.12.04: Major update to **ms-swift 3.0**. Please refer to the [release notes and changes](docs/source_en/Instruction/ReleaseNote3.0.md).
<details><summary>More</summary>
- π 2024.08.12: The ms-swift paper has been published on arXiv and can be read [here](https://arxiv.org/abs/2408.05517).
- π₯ 2024.08.05: Support for using [evalscope](https://github.com/modelscope/evalscope/) as a backend for evaluating large models and multimodal models.
- π₯ 2024.07.29: Support for using [vllm](https://github.com/vllm-project/vllm) and [lmdeploy](https://github.com/InternLM/lmdeploy) to accelerate inference for large models and multimodal models. When performing infer/deploy/eval, you can specify `--infer_backend vllm/lmdeploy`.
- π₯ 2024.07.24: Support for human preference alignment training for multimodal large models, including DPO/ORPO/SimPO/CPO/KTO/RM/PPO.
- π₯ 2024.02.01: Support for Agent training! The training algorithm is derived from [this paper](https://arxiv.org/pdf/2309.00986.pdf).
</details>
## π οΈ Installation
To install using pip:
```shell
pip install ms-swift -U
```
To install from source:
```shell
# pip install git+https://github.com/modelscope/ms-swift.git
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .
```
Running Environment:
| | Range | Recommended | Notes |
| ------------ |--------------| ----------- | ----------------------------------------- |
| python | >=3.9 | 3.10 | |
| cuda | | cuda12 | No need to install if using CPU, NPU, MPS |
| torch | >=2.0 | | |
| transformers | >=4.33 | 4.51.3 | |
| modelscope | >=1.23 | | |
| peft | >=0.11,<0.16 | ||
| trl | >=0.13,<0.19 | 0.18 |RLHF|
| deepspeed | >=0.14 | 0.16.9 | Training |
| vllm | >=0.5.1 | 0.8.5.post1 | Inference/Deployment/Evaluation |
| sglang | | 0.4.6.post5 | Inference/Deployment/Evaluation |
| lmdeploy | >=0.5,<0.9 | 0.8 | Inference/Deployment/Evaluation |
| evalscope | >=0.11 | | Evaluation |
For more optional dependencies, you can refer to [here](https://github.com/modelscope/ms-swift/blob/main/requirements/install_all.sh).
## π Quick Start
10 minutes of self-cognition fine-tuning of Qwen2.5-7B-Instruct on a single 3090 GPU:
### Command Line Interface
```shell
# 22GB
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model Qwen/Qwen2.5-7B-Instruct \
--train_type lora \
--dataset 'AI-ModelScope/alpaca-gpt4-data-zh#500' \
'AI-ModelScope/alpaca-gpt4-data-en#500' \
'swift/self-cognition#500' \
--torch_dtype bfloat16 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--learning_rate 1e-4 \
--lora_rank 8 \
--lora_alpha 32 \
--target_modules all-linear \
--gradient_accumulation_steps 16 \
--eval_steps 50 \
--save_steps 50 \
--save_total_limit 2 \
--logging_steps 5 \
--max_length 2048 \
--output_dir output \
--system 'You are a helpful assistant.' \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--model_author swift \
--model_name swift-robot
```
Tips:
- If you want to train with a custom dataset, you can refer to [this guide](https://swift.readthedocs.io/en/latest/Customization/Custom-dataset.html) to organize your dataset format and specify `--dataset <dataset_path>`.
- The `--model_author` and `--model_name` parameters are only effective when the dataset includes `swift/self-cognition`.
- To train with a different model, simply modify `--model <model_id/model_path>`.
- By default, ModelScope is used for downloading models and datasets. If you want to use HuggingFace, simply specify `--use_hf true`.
After training is complete, use the following command to infer with the trained weights:
- Here, `--adapters` should be replaced with the last checkpoint folder generated during training. Since the adapters folder contains the training parameter file `args.json`, there is no need to specify `--model`, `--system` separately; Swift will automatically read these parameters. To disable this behavior, you can set `--load_args false`.
```shell
# Using an interactive command line for inference.
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--adapters output/vx-xxx/checkpoint-xxx \
--stream true \
--temperature 0 \
--max_new_tokens 2048
# merge-lora and use vLLM for inference acceleration
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--adapters output/vx-xxx/checkpoint-xxx \
--stream true \
--merge_lora true \
--infer_backend vllm \
--max_model_len 8192 \
--temperature 0 \
--max_new_tokens 2048
```
Finally, use the following command to push the model to ModelScope:
```shell
CUDA_VISIBLE_DEVICES=0 \
swift export \
--adapters output/vx-xxx/checkpoint-xxx \
--push_to_hub true \
--hub_model_id '<your-model-id>' \
--hub_token '<your-sdk-token>' \
--use_hf false
```
### Web-UI
The Web-UI is a **zero-threshold** training and deployment interface solution based on Gradio interface technology. For more details, you can check [here](https://swift.readthedocs.io/en/latest/GetStarted/Web-UI.html).
```shell
SWIFT_UI_LANG=en swift web-ui
```

### Using Python
ms-swift also supports training and inference using Python. Below is pseudocode for training and inference. For more details, you can refer to [here](https://github.com/modelscope/ms-swift/blob/main/examples/notebook/qwen2_5-self-cognition/self-cognition-sft.ipynb).
Training:
```python
# Retrieve the model and template, and add a trainable LoRA module
model, tokenizer = get_model_tokenizer(model_id_or_path, ...)
template = get_template(model.model_meta.template, tokenizer, ...)
model = Swift.prepare_model(model, lora_config)
# Download and load the dataset, and encode the text into tokens
train_dataset, val_dataset = load_dataset(dataset_id_or_path, ...)
train_dataset = EncodePreprocessor(template=template)(train_dataset, num_proc=num_proc)
val_dataset = EncodePreprocessor(template=template)(val_dataset, num_proc=num_proc)
# Train the model
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
data_collator=template.data_collator,
train_dataset=train_dataset,
eval_dataset=val_dataset,
template=template,
)
trainer.train()
```
Inference:
```python
# Perform inference using the native PyTorch engine
engine = PtEngine(model_id_or_path, adapters=[lora_checkpoint])
infer_request = InferRequest(messages=[{'role': 'user', 'content': 'who are you?'}])
request_config = RequestConfig(max_tokens=max_new_tokens, temperature=temperature)
resp_list = engine.infer([infer_request], request_config)
print(f'response: {resp_list[0].choices[0].message.content}')
```
## β¨ Usage
Here is a minimal example of training to deployment using ms-swift. For more details, you can check the [examples](https://github.com/modelscope/ms-swift/tree/main/examples).
- If you want to use other models or datasets (including multimodal models and datasets), you only need to modify `--model` to specify the corresponding model's ID or path, and modify `--dataset` to specify the corresponding dataset's ID or path.
- By default, ModelScope is used for downloading models and datasets. If you want to use HuggingFace, simply specify `--use_hf true`.
| Useful Links |
| ------ |
| [π₯Command Line Parameters](https://swift.readthedocs.io/en/latest/Instruction/Command-line-parameters.html) |
| [Supported Models and Datasets](https://swift.readthedocs.io/en/latest/Instruction/Supported-models-and-datasets.html) |
| [Custom Models](https://swift.readthedocs.io/en/latest/Customization/Custom-model.html), [π₯Custom Datasets](https://swift.readthedocs.io/en/latest/Customization/Custom-dataset.html) |
| [LLM Tutorial](https://github.com/modelscope/modelscope-classroom/tree/main/LLM-tutorial) |
### Training
Supported Training Methods:
| Method | Full-Parameter | LoRA | QLoRA | Deepspeed | Multi-Node | Multi-Modal |
|------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Pre-training | [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/pretrain/train.sh) | β
| β
| β
| β
| β
|
| Instruction Supervised Fine-tuning | [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/full/train.sh) | [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/lora_sft.sh) | [β
](https://github.com/modelscope/ms-swift/tree/main/examples/train/qlora) | [β
](https://github.com/modelscope/ms-swift/tree/main/examples/train/multi-gpu/deepspeed) | [β
](https://github.com/modelscope/ms-swift/tree/main/examples/train/multi-node) | [β
](https://github.com/modelscope/ms-swift/tree/main/examples/train/multimodal) |
| DPO Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/dpo) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/dpo) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/multimodal/rlhf/dpo) |
| GRPO Training | [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/grpo/internal) | β
| β
| β
| [β
](https://github.com/modelscope/ms-swift/tree/main/examples/train/grpo/external) | β
|
| Reward Model Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/rm.sh) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/rm.sh) | β
| β
|
| PPO Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/ppo) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/ppo) | β
| β |
| GKD Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/gkd) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/gkd) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/multimodal/rlhf/gkd) |
| KTO Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/kto.sh) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/kto.sh) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/multimodal/rlhf/kto.sh) |
| CPO Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/cpo.sh) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/cpo.sh) | β
| β
|
| SimPO Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/simpo.sh) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/simpo.sh) | β
| β
|
| ORPO Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/orpo.sh) | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/rlhf/orpo.sh) | β
| β
|
| Classification Model Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/seq_cls/qwen2_5/sft.sh) | β
| β
| β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/seq_cls/qwen2_vl/sft.sh) |
| Embedding Model Training | β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/embedding/train_gte.sh) | β
| β
| β
| [β
](https://github.com/modelscope/ms-swift/blob/main/examples/train/embedding/train_gme.sh) |
| Reranker Model Training | β
| β
| β
| β
| β
| β |
Pre-training:
```shell
# 8*A100
NPROC_PER_NODE=8 \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
swift pt \
--model Qwen/Qwen2.5-7B \
--dataset swift/chinese-c4 \
--streaming true \
--train_type full \
--deepspeed zero2 \
--output_dir output \
--max_steps 10000 \
...
```
Fine-tuning:
```shell
CUDA_VISIBLE_DEVICES=0 swift sft \
--model Qwen/Qwen2.5-7B-Instruct \
--dataset AI-ModelScope/alpaca-gpt4-data-en \
--train_type lora \
--output_dir output \
...
```
RLHF:
```shell
CUDA_VISIBLE_DEVICES=0 swift rlhf \
--rlhf_type dpo \
--model Qwen/Qwen2.5-7B-Instruct \
--dataset hjh0119/shareAI-Llama3-DPO-zh-en-emoji \
--train_type lora \
--output_dir output \
...
```
### Inference
```shell
CUDA_VISIBLE_DEVICES=0 swift infer \
--model Qwen/Qwen2.5-7B-Instruct \
--stream true \
--infer_backend pt \
--max_new_tokens 2048
# LoRA
CUDA_VISIBLE_DEVICES=0 swift infer \
--model Qwen/Qwen2.5-7B-Instruct \
--adapters swift/test_lora \
--stream true \
--infer_backend pt \
--temperature 0 \
--max_new_tokens 2048
```
### Interface Inference
```shell
CUDA_VISIBLE_DEVICES=0 swift app \
--model Qwen/Qwen2.5-7B-Instruct \
--stream true \
--infer_backend pt \
--max_new_tokens 2048
```
### Deployment
```shell
CUDA_VISIBLE_DEVICES=0 swift deploy \
--model Qwen/Qwen2.5-7B-Instruct \
--infer_backend vllm
```
### Sampling
```shell
CUDA_VISIBLE_DEVICES=0 swift sample \
--model LLM-Research/Meta-Llama-3.1-8B-Instruct \
--sampler_engine pt \
--num_return_sequences 5 \
--dataset AI-ModelScope/alpaca-gpt4-data-zh#5
```
### Evaluation
```shell
CUDA_VISIBLE_DEVICES=0 swift eval \
--model Qwen/Qwen2.5-7B-Instruct \
--infer_backend lmdeploy \
--eval_backend OpenCompass \
--eval_dataset ARC_c
```
### Quantization
```shell
CUDA_VISIBLE_DEVICES=0 swift export \
--model Qwen/Qwen2.5-7B-Instruct \
--quant_bits 4 --quant_method awq \
--dataset AI-ModelScope/alpaca-gpt4-data-zh \
--output_dir Qwen2.5-7B-Instruct-AWQ
```
### Push Model
```shell
swift export \
--model <model-path> \
--push_to_hub true \
--hub_model_id '<model-id>' \
--hub_token '<sdk-token>'
```
## π License
This framework is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE). For models and datasets, please refer to the original resource page and follow the corresponding License.
## π Citation
```bibtex
@misc{zhao2024swiftascalablelightweightinfrastructure,
title={SWIFT:A Scalable lightWeight Infrastructure for Fine-Tuning},
author={Yuze Zhao and Jintao Huang and Jinghan Hu and Xingjun Wang and Yunlin Mao and Daoze Zhang and Zeyinzi Jiang and Zhikai Wu and Baole Ai and Ang Wang and Wenmeng Zhou and Yingda Chen},
year={2024},
eprint={2408.05517},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.05517},
}
```
## Star History
[](https://star-history.com/#modelscope/ms-swift&Date)
|