File size: 1,473 Bytes
5b58a01
 
 
 
 
 
 
 
b7cf700
5b58a01
 
 
 
 
 
b7cf700
5b58a01
 
 
2099dca
 
5b58a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cf700
d5e9723
b7cf700
5b58a01
 
 
 
8ddf2de
5b58a01
 
 
 
 
 
2099dca
 
5b58a01
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: opus-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opus-base

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0163
- Wer: 11.1424

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0228        | 0.3668 | 1000 | 0.0179          | 13.6776 |
| 0.0218        | 0.7337 | 2000 | 0.0163          | 11.1424 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1