File size: 6,318 Bytes
017bf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
import os
import numpy as np
from diffusers.models.attention_processor import Attention

class VisualTokenSelfAttn(torch.nn.Module):
    def __init__(self, in_dim=2792, out_dim=768, num_heads=8):
        super().__init__()

        self.meta_token_trans = nn.Sequential(
            nn.Linear(in_dim, out_dim * 4),
            nn.LayerNorm(out_dim * 4),
            nn.GELU(),
            nn.Linear(out_dim * 4, out_dim),
            nn.LayerNorm(out_dim)
        )

        self.norm1 = nn.LayerNorm(out_dim, eps=1e-6) # important to avoid attention collapsing
        self.attn = Attention(query_dim=out_dim, heads=num_heads)
        self.norm2 = nn.LayerNorm(out_dim, eps=1e-6)
        self.mlp = nn.Sequential(
            nn.Linear(out_dim, out_dim * 4),
            nn.GELU(),
            nn.Linear(out_dim * 4, out_dim)
        )

    def forward(self, x):
        x = self.meta_token_trans(x)
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x


class EmotionEmbedding(nn.Module):
    def __init__(self, emotions, prompts_dir, feature_names, output_dim, prompt_len=16):
        super().__init__()
        
        input_dim = self.get_input_dim(feature_names=feature_names)
        self.self_attn = VisualTokenSelfAttn(in_dim=input_dim, out_dim=output_dim)
        
        self.emotions = emotions
        self.emotion2idx = {emotion: idx for idx, emotion in enumerate(emotions)}
        self.emotion_params = nn.ParameterList()
        
        self.emotion_init_features = self.get_features(emotions, prompts_dir, feature_names, prompt_len)

        for emotion in self.emotions:
            init_params = self.emotion_init_features[emotion]
            # init_params = torch.from_numpy(init_params).float()
            param = nn.Parameter(init_params)
            self.emotion_params.append(param)
    
    def get_features(self, emotions, prompts_dir, feature_names, prompt_len):
        emotion_init_features = {}
        for emotion in emotions:
            emotion_features = []
            for feature_name in feature_names:
                features = np.load(os.path.join(prompts_dir, f'{emotion}_{feature_name}.npy'), allow_pickle=True)
                emotion_features.append(features)
            emotion_features = np.concatenate(emotion_features, axis=1)
            
            from sklearn.cluster import KMeans
            kmeans = KMeans(n_clusters=prompt_len, random_state=42)
            kmeans.fit_predict(emotion_features)
            token = torch.tensor(kmeans.cluster_centers_).unsqueeze(0)
            # print(token.shape)
            emotion_init_features[emotion] = token
        return emotion_init_features
            
    def get_input_dim(self, feature_names):
        if feature_names == ["clip"]:
            in_dim = 768
        elif feature_names == ["vgg"]:
            in_dim = 1000
        elif feature_names == ["dinov2"]:
            in_dim = 1024
        elif feature_names == ["clip", "vgg"]:
            in_dim = 1768
        elif feature_names == ["clip", "dinov2"]:
            in_dim = 1768
        elif feature_names == ["vgg", "dinov2"]:
            in_dim = 2024
        elif feature_names == ["clip", "vgg", "dinov2"]:
            in_dim = 2792
        else:
            raise ValueError("Invalid feature names")
        return in_dim
    
    def params_to_prompts(self):
        self.emotion_prompts = {}
        for emotion in self.emotions:
            prompt = self.self_attn(self.emotion_params[self.emotion2idx[emotion]])
            prompt = prompt.squeeze(0)
            self.emotion_prompts[emotion] = prompt

    def forward(self, emotion):
        if isinstance(emotion, str): 
            emotions = [emotion]
        else: 
            emotions = emotion
        
        self.params_to_prompts()
        selected_prompts = [self.emotion_prompts[emotion] for emotion in emotions]
        prompts = torch.stack(selected_prompts, dim=0)
        del self.emotion_prompts
        
        return prompts

class EmotionEmbedding2(nn.Module):
    def __init__(self, emotions, input_dim, output_dim):
        super().__init__()
        self.self_attn = VisualTokenSelfAttn(in_dim=input_dim, out_dim=output_dim)
        self.emotions = emotions
        self.emotion2idx = {emotion: idx for idx, emotion in enumerate(emotions)}
        self.emotion_params = nn.Embedding(len(emotions), input_dim)
    
    def forward(self, emotion):
        if isinstance(emotion, str): 
            emotions = [emotion]
        else: 
            emotions = emotion

        emotions = [self.emotion2idx[emotion] for emotion in emotions]
        emotions = torch.tensor(emotions, device=self.emotion_params.weight.device)
        prompts = self.emotion_params(emotions).unsqueeze(1)
        prompts = self.self_attn(prompts)
        return prompts
    
if __name__ == "__main__":
    # emotions = ["amusement", "anger", "awe", "contentment", 
    #             "disgust", "excitement", "fear", "sadness"]
    # feature_names = ["clip", "vgg", "dinov2"]
    # prompts_dir = "features/origin"
    # model = EmotionEmbedding(emotions, prompts_dir, feature_names, output_dim=2048, prompt_len=16).to("cuda")
    # optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    # output = model('awe')
    # target = torch.ones_like(output)
    # loss = ((output - target) ** 2).mean()
    # print(output)

    emotions = ["amusement", "anger", "awe", "contentment", 
            "disgust", "excitement", "fear", "sadness"]
    prompts_dir = "features/origin"
    model = EmotionEmbedding2(emotions, input_dim=2048, output_dim=2048, prompt_len=16).to("cuda")
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    output = model('awe')
    target = torch.ones_like(output)
    loss = ((output - target) ** 2).mean()
    print(output)

    # 反向传播
    loss.backward()

    # 打印看看梯度
    for name, param in model.named_parameters():
        if param.grad is not None:
            print(f"{name} has gradient ✅, grad mean: {param.grad.mean().item()}")
            if name == "emotion_params.weight":
                print(param.grad)
        else:
            print(f"{name} has NO gradient ❌")

    # 更新一下参数
    optimizer.step()
    print(output)