Ejafa's picture
Update README.md
903370b verified
metadata
license: apache-2.0
base_model: Qwen/Qwen2-1.5B-Instruct
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - princeton-nlp/llama3-ultrafeedback
model-index:
  - name: qwen2-1.5b-instruct-simpo-lr-5e-07-gamma-1.5
    results: []

Description

This model was trained as part of the Reinforcement Learning - 24 project at Peking University, focusing on [simpo].

Authors

  • Ejafa Bassam
  • Yaroslav Ponomarenko

qwen2-1.5b-instruct-simpo-lr-5e-07-gamma-1.5

This model is a fine-tuned version of Qwen/Qwen2-1.5B-Instruct on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6346
  • Rewards/chosen: -2.6152
  • Rewards/rejected: -2.7999
  • Rewards/accuracies: 0.5685
  • Rewards/margins: 0.1847
  • Logps/rejected: -1.1200
  • Logps/chosen: -1.0461
  • Logits/rejected: -1.5578
  • Logits/chosen: -1.5356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.6402 0.8549 400 1.6353 -2.6155 -2.7990 0.5726 0.1835 -1.1196 -1.0462 -1.5085 -1.4841

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1