|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- pytorch |
|
- llama-2 |
|
pipeline_tag: text-generation |
|
base_model: meta-llama/Llama-2-7b-chat-hf |
|
--- |
|
This model is fine-tuned on [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) using [MedQuAD](https://github.com/abachaa/MedQuAD) (Medical Question Answering Dataset). |
|
If you are interested how to fine-tune Llama-2 or other LLM models, the [repo](https://github.com/yhyu/fine-tune-llm) will tell you. |
|
|
|
## Usage |
|
|
|
```python |
|
base_model = "meta-llama/Llama-2-7b-chat-hf" |
|
adapter = 'EdwardYu/llama-2-7b-MedQuAD' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(adapter) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_4bit=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
), |
|
) |
|
model = PeftModel.from_pretrained(model, adapter) |
|
|
|
question = 'What are the side effects or risks of Glucagon?' |
|
inputs = tokenizer(question, return_tensors="pt").to("cuda") |
|
outputs = model.generate(inputs=inputs.input_ids, max_length=1024) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
To run model inference faster, you can load in 16-bits without 4-bit quantization. |
|
```python |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained(model, adapter) |
|
``` |