File size: 1,898 Bytes
a99bc97
982f56c
aee2cdd
a99bc97
 
 
 
 
 
 
 
 
 
 
 
aee2cdd
a99bc97
6403074
a99bc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d59fc
a99bc97
2e7b398
a99bc97
 
 
 
 
a0d59fc
f7167b3
 
a99bc97
71218a7
 
 
 
6403074
 
 
 
 
 
 
 
71218a7
 
a99bc97
 
a0d59fc
 
80b1454
a0c0ff3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: Edmon02/speecht5_finetuned_voxpopuli_hy
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_voxpopuli_hy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_voxpopuli_hy

This model is a fine-tuned version of [Edmon02/speecht5_finetuned_voxpopuli_hy](https://huggingface.co/Edmon02/speecht5_finetuned_voxpopuli_hy) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4910

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.5849        | 33.8983  | 500  | 0.5350          |
| 0.5475        | 67.7966  | 1000 | 0.5175          |
| 0.5241        | 101.6949 | 1500 | 0.5054          |
| 0.5105        | 135.5932 | 2000 | 0.4974          |
| 0.5013        | 169.4915 | 2500 | 0.4956          |
| 0.4971        | 203.3898 | 3000 | 0.4913          |
| 0.4874        | 237.2881 | 3500 | 0.4884          |
| 0.4872        | 271.1864 | 4000 | 0.4910          |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1