File size: 1,898 Bytes
a99bc97 982f56c aee2cdd a99bc97 aee2cdd a99bc97 2e7b398 a99bc97 a0d59fc a99bc97 2e7b398 a99bc97 a0d59fc f7167b3 a99bc97 71218a7 2e7b398 71218a7 a99bc97 a0d59fc 80b1454 a0c0ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: Edmon02/speecht5_finetuned_voxpopuli_hy
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_voxpopuli_hy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_hy
This model is a fine-tuned version of [Edmon02/speecht5_finetuned_voxpopuli_hy](https://huggingface.co/Edmon02/speecht5_finetuned_voxpopuli_hy) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.6306 | 57.1429 | 500 | 0.6027 |
| 0.6062 | 114.2857 | 1000 | 0.6026 |
| 0.5872 | 171.4286 | 1500 | 0.6059 |
| 0.5767 | 228.5714 | 2000 | 0.6197 |
| 0.5672 | 285.7143 | 2500 | 0.6145 |
| 0.5605 | 342.8571 | 3000 | 0.6194 |
| 0.5569 | 400.0 | 3500 | 0.6195 |
| 0.5552 | 457.1429 | 4000 | 0.6183 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|