JeongwonChoi's picture
Update README.md
9ae229f verified
|
raw
history blame
3.71 kB
metadata
tags:
  - text-generation
license: cc-by-nc-sa-4.0
language:
  - ko
base_model: yanolja/KoSOLAR-10.7B-v0.1
pipeline_tag: text-generation
datasets:
  - nlpai-lab/kullm-v2

DataVortexS-10.7B-v0.1

DataVortex

Model Details

Base Model

yanolja/KoSOLAR-10.7B-v0.1

Trained On

  • OS: Ubuntu 20.04
  • GPU: H100 80GB 1ea
  • transformers: v4.36.2

Dataset

Instruction format

It follows Alpaca format.

E.g.

text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### Instruction:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Response:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### Instruction:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""

Model Benchmark

Ko-LLM-Leaderboard

On Benchmarking ...

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
DataVortexM-7B-Instruct-v0.1 39.81 34.13 42.35 38.73 45.46 38.37
DataVortexS-10.7B-v0.1 0 0 0 0 0 0
DataVortexS-10.7B-v0.2 43.6 38.74 50.74 38.98 44.7 44.86
DataVortexS-10.7B-v0.3 0 0 0 0 0 0
DataVortexS-10.7B-v0.4 0 0 0 0 0 0
DataVortexS-10.7B-v1.0 0 0 0 0 0 0
DataVortexTL-1.1B-v0.1 0 0 0 0 0 0
DataVortexS-10.7B-dpo-v0.1 0 0 0 0 0 0

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.