vit-fire-detection / README.md
EdBianchi's picture
update model card README.md
3b0be98
|
raw
history blame
2.11 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
model-index:
  - name: vit-fire-detection
    results: []

vit-fire-detection

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0524
  • Precision: 0.9803
  • Recall: 0.9802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall
0.5087 1.0 190 0.5356 0.8054 0.7421
0.2943 2.0 380 0.1430 0.9536 0.9524
0.2409 3.0 570 0.1360 0.9541 0.9537
0.1722 4.0 760 0.1265 0.9557 0.9550
0.1726 5.0 950 0.1011 0.9633 0.9630
0.1563 6.0 1140 0.0946 0.9695 0.9696
0.1181 7.0 1330 0.0961 0.9643 0.9630
0.1288 8.0 1520 0.0616 0.9765 0.9762
0.0858 9.0 1710 0.0699 0.9765 0.9762
0.0539 10.0 1900 0.0524 0.9803 0.9802

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.14.0.dev20221111
  • Datasets 2.8.0
  • Tokenizers 0.12.1